Skip to main content

Advertisement

Log in

The importance of range edges for an irruptive species during extreme weather events

  • Research Article
  • Published:
Landscape Ecology Aims and scope Submit manuscript

Abstract

Context

Threats to wildlife species from extreme events, such as droughts, are predicted to increase in frequency and magnitude with climate change. Extreme events can cause mortality and community-level changes, but for some mobile species, movement away from areas affected may be a viable option.

Objectives

We examined the effect of extreme weather on spatial patterns of abundance for an irruptive grassland bird species, the Dickcissel (Spiza americana).

Methods

We calculated route-level annual abundances and abundance anomalies from 1980 to 2012 from North American Breeding Bird Survey data, and classified the Dickcissel’s range into core and edge regions using these abundances. We then compared abundances in the core and edge regions to the standardized precipitation evapotranspiration index, a measure of drought, in linear regressions.

Results

We found that Dickcissel irruptions in the northern range edges were related to drought conditions in the range core, potentially a consequence of birds being ‘pushed’ to the range edge when weather was unsuitable. Specifically, Dickcissels moved into refuge sites containing a high proportion of cultivated crops, with higher vegetation greenness, than those areas they leave during drought years.

Conclusions

In a changing climate where more frequent extreme weather may be more common, conservation strategies for weather-sensitive species may require consideration of habitat in the edges of species’ ranges, even though non-core areas may be unoccupied in ‘normal’ years. Our results highlight the conservation importance of range edges in providing refuge from extreme events, such as drought, and climate change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Albright TP, Pidgeon AM, Rittenhouse CD, Clayton MK, Flather CH, Culbert PD, Wardlow BD, Radeloff VC (2010a) Effects of drought on avian community structure. Glob Chang Biol 16(8):2158–2170

    Article  Google Scholar 

  • Albright TP, Pidgeon AM, Rittenhouse CD, Clayton MK, Wardlow BD, Flather CH, Culbert PD, Radeloff VC (2010b) Combined effects of heat waves and droughts on avian communities across the conterminous United States. Ecosphere 1(5):Article 12

  • Albright TP, Pidgeon AM, Rittenhouse CD, Clayton MK, Flather CH, Culbert PD, Radeloff VC (2011) Heat waves measured with MODIS land surface temperature data predict changes in avian community structure. Remote Sens Environ 115(1):245–254

    Article  Google Scholar 

  • Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56. FAO, Rome 300:6541

  • Anderson BJ, Akçakaya HR, Araújo MB, Fordham DA, Martinez-Meyer E, Thuiller W, Brook BW (2009) Dynamics of range margins for metapopulations under climate change. Proc R Soc B 276(1661):1415–1420

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Araújo MB, Williams PH (2001) The bias of complementarity hotspots toward marginal populations. Conserv Biol 15(6):1710–1720

    Article  Google Scholar 

  • Archaux F, Wolters V (2006) Impact of summer drought on forest biodiversity: what do we know? Ann For Sci 63(6):645–652

    Article  Google Scholar 

  • Baraldi A, Parmiggiani F (1995) An investigation of the textural characteristics associated with gray level cooccurrence matrix statistical parameters. IEEE Trans Geosci Remote Sens 33(2):293–304

    Article  Google Scholar 

  • Barry JH, Butler LK, Rohwer S, Rohwer VG (2009) Documenting molt-migration in Western Kingbird (Tyrannus verticalis) using two measures of collecting effort. Auk 126(2):260–267

    Article  Google Scholar 

  • Basili GD, Temple SA (1999) Dickcissels and crop damage in Venezuela: defining the problem with ecological models. Ecol Appl 9(2):732–739

    Article  Google Scholar 

  • Bateman BL, Abell-Davis SE, Johnson CN (2012a) Climate-driven variation in food availability between the core and range edge of the endangered northern bettong (Bettongia tropica). Aust J Zool 59:177–185

    Article  Google Scholar 

  • Bateman BL, VanDerWal J, Johnson CN (2012b) Nice weather for bettongs: using weather events, not climate means, in species distribution models. Ecography 35(4):306–314

    Article  Google Scholar 

  • Beguería S, Vicente-Serrano SM, Angulo-Martínez M (2010) A multiscalar global drought dataset: the SPEIbase: a new gridded product for the analysis of drought variability and impacts. Bull Am Meteorol Soc 91(10):1351–1356

    Article  Google Scholar 

  • Beguería S, Vicente-Serrano SM, Reig F, Latorre B (2014) Standardized precipitation evapotranspiration index (SPEI) revisited: parameter fitting, evapotranspiration models, tools, datasets and drought monitoring. Int J Climatol 34(10):3001–3023

    Article  Google Scholar 

  • Bellis LM, Pidgeon AM, Radeloff VC, St-Louis V, Navarro JL, Martella MB (2008) Modeling habitat suitability for greater rheas based on satellite image texture. Ecol Appl 18(8):1956–1966

    Article  PubMed  Google Scholar 

  • Brook BW, Akçakaya HR, Keith DA, Mace GM, Pearson RG, Araújo MB (2009) Integrating bioclimate with population models to improve forecasts of species extinctions under climate change. Biol Lett 5(6):723–725

    Article  PubMed Central  PubMed  Google Scholar 

  • Brown JH, Mehlman DW, Stevens GC (1995) Spatial variation in abundance. Ecology 76(7):2028–2043

    Article  Google Scholar 

  • Chen I-C, Hill JK, Ohlemüller R, Roy DB, Thomas CD (2011) Rapid range shifts of species associated with high levels of climate warming. Science 333(6045):1024–1026

    Article  CAS  PubMed  Google Scholar 

  • Cormont A, Vos C, van Turnhout C, Foppen R, ter Braak C (2011) Using life-history traits to explain bird population responses to changing weather variability. Clim Res 49(1):59–71

    Article  Google Scholar 

  • Coumou D, Rahmstorf S (2012) A decade of weather extremes. Nat Clim Chang 2(7):491–496

    Google Scholar 

  • Culbert PD, Radeloff VC, St-Louis V, Flather CH, Rittenhouse CD, Albright TP, Pidgeon AM (2012) Modeling broad-scale patterns of avian species richness across the Midwestern United States with measures of satellite image texture. Remote Sens Environ 118:140–150

    Article  Google Scholar 

  • Culbert PD, Radeloff VC, Flather CH, Kellndorfer JM, Rittenhouse CD, Pidgeon AM (2013) The influence of vertical and horizontal habitat structure on nationwide patterns of avian biodiversity. Auk 130(4):656–665

    Article  Google Scholar 

  • Dai A (2013) Increasing drought under global warming in observations and models. Nat Clim Chang 3:52–58

    Article  Google Scholar 

  • Dean W, Barnard P, Anderson M (2009) When to stay, when to go: trade-offs for southern African arid-zone birds in times of drought. S Afr J Sci 105:24–28

    Article  Google Scholar 

  • Dechant J, Sondreal M, Johnson D, Igl LD, Goldade CM, Zimmerman AL, Euliss BR (2002) Effects of management practices on grassland birds: Dickcissel. USGS North Prairie Wildl Res Cent 114

  • Emlen JT, Wiens JA (1965) The Dickcissel invasion of 1964 in southern Wisconsin. Passeng Pigeon 27:51–59

    Google Scholar 

  • Fay P, Carlisle J, Knapp A, Blair J, Collins S (2003) Productivity responses to altered rainfall patterns in a C4-dominated grassland. Oecologia 137(2):245–251

    Article  PubMed  Google Scholar 

  • Flather CH, Sauer JR (1996) Using landscape ecology to test hypotheses about large-scale abundance patterns in migratory birds. Ecology 77(1):28–35

    Article  Google Scholar 

  • Fox A, Walsh A (2012) Warming winter effects, fat store accumulation and timing of spring departure of Greenland White-fronted Geese Anser albifrons flavirostris from their winter quarters. Hydrobiologia 697(1):95–102

    Article  Google Scholar 

  • Frawley BJ, Best LB (1991) Effects of mowing on breeding bird abundance and species composition in alfalfa fields. Wildl Soc Bull 19(2):135–142

    Google Scholar 

  • Fretwell S (1986) Distribution and abundance of the Dickcissel. Curr Ornithol 4:211–242

    Google Scholar 

  • Fuguitt GV (1959) Part-time farming and the push-pull hypothesis. Am J Sociol 64(4):375–379

    Article  Google Scholar 

  • Gibson SY, Van Der Marel RC, Starzomski BM (2009) Climate change and conservation of leading-edge peripheral populations. Conserv Biol 23(6):1369–1373

    Article  PubMed  Google Scholar 

  • Goodess CM (2013) How is the frequency, location and severity of extreme events likely to change up to 2060? Environ Sci Policy 27:S4–S14

    Article  Google Scholar 

  • Gutschick VP, BassiriRad H (2003) Extreme events as shaping physiology, ecology, and evolution of plants: toward a unified definition and evaluation of their consequences. New Phytol 160(1):21–42

    Article  Google Scholar 

  • Guttman NB (1998) Comparing the palmer drought index and the standardized precipitation index. J Am Water Resour Assoc 34(1):113–121

    Article  Google Scholar 

  • Hampe A, Petit RJ (2005) Conserving biodiversity under climate change: the rear edge matters. Ecol Lett 8(5):461–467

    Article  PubMed  Google Scholar 

  • Hardie DC, Hutchings JA (2010) Evolutionary ecology at the extremes of species’ ranges. Environ Rev 18(NA):1–20

    Article  Google Scholar 

  • Harlick R, Shanmugam K, Dinstein I (1973) Texture feature for image classification. IEEE Trans Syst Man Cybern 3(6):610–623

    Article  Google Scholar 

  • Hitch AT, Leberg PL (2007) Breeding distributions of North American bird species moving north as a result of climate change. Conserv Biol 21(2):534–539

    Article  PubMed  Google Scholar 

  • Homer C, Dewitz J, Fry J, Coan M, Hossain N, Larson C, Herold N, Wickham J (2007) Completion of the 2001 national land cover database for the counterminous United States. Photogramm Eng Remote Sens 73(4):337

    Google Scholar 

  • Hurley RJ, Franks EC (1976) Changes in the breeding ranges of two grassland birds. Auk 93(1):108–115

    Google Scholar 

  • Igl L (1991) The role of climate and mowing on Dickcissel movements, distribution, and abundance. Iowa State

  • IPCC (2007) Climate change 2007: the physical science basis. In: Solomon S e. a. (ed), Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge, UK, p 996

  • IPCC (2012) Managing the risks of extreme events and disasters to advance climate change adaptation. In: Field CB, Barros V, Stocker TF, Qin D, Dokken DJ, Ebi KL, Mastrandrea MD, Midgley PM (eds) A special report of working groups I and II of the intergovernmental panel on climate shange. Cambridge University Press, Cambridge, p 582

    Google Scholar 

  • Jentsch A, Beierkuhnlein C (2008) Research frontiers in climate change: effects of extreme meteorological events on ecosystems. Comptes Rendus Geosci 340(9–10):621–628

    Article  Google Scholar 

  • Jentsch A, Kreyling J, Beierkuhnlein C (2007) A new generation of climate-change experiments: events, not trends. Front Ecol Environ 5(7):365–374

    Article  Google Scholar 

  • Jiguet F, Julliard R, Thomas CD, Dehorter O, Newson SE, Couvet D (2006) Thermal range predicts bird population resilience to extreme high temperatures. Ecol Lett 9(12):1321–1330

    Article  PubMed  Google Scholar 

  • Jiménez-Valverde A, Barve N, Lira-Noriega A, Maher SP, Nakazawa Y, papeş M, Soberón J, Sukumaran J, Peterson AT (2011) Dominant climate influences on North American bird distributions. Glob Ecol Biogeogr 20(1):114–118

    Article  Google Scholar 

  • Keppel G, Van Niel KP, Wardell-Johnson GW, Yates CJ, Byrne M, Mucina L, Schut AGT, Hopper SD, Franklin SE (2012) Refugia: identifying and understanding safe havens for biodiversity under climate change. Glob Ecol Biogeogr 21(4):393–404

    Article  Google Scholar 

  • Kingsolver JG (1989) Weather and the population dynamics of insects: integrating physiological and population ecology. Physiol Zool 62(2):314–334

    Google Scholar 

  • Koenig WD (2001) Synchrony and periodicity of eruptions by boreal birds. Condor 103(4):725–735

    Article  Google Scholar 

  • Koenig WD, Knops JMH (2001) Seed-crop size and eruptions of North American boreal seed-eating birds. J Anim Ecol 70(4):609–620

    Article  Google Scholar 

  • Kunkel KE, Bromirski PD, Brooks HE, Cavazos T, Douglas AV, Easterling DR, Emanuel KA, Groisman PYa, Holland GJ, Knutson TR, Kossin JP, Komar PD, Levinson DH, Smith RL (2008) Observed changes in weather and climate extremes in weather and climate extremes in a changing climate. Regions of focus: North America, Hawaii, Caribbean, and U.S. Pacific Islands. In: Karl TR, Meehl GA, Miller CD, Hassol SJ, Waple AM, Murray WL (eds) A report by the U.S. climate change science program and the subcommittee on global change research, Washington, DC

  • Lesica P, Allendorf FW (1995) When are peripheral populations valuable for conservation? Conserv Biol 9(4):753–760

    Article  Google Scholar 

  • Luscier JD, Thompson WL (2009) Short-term responses of breeding birds of grassland and early successional habitat to timing of haying in Northwestern Arkansas. Condor 111(3):538–544

    Article  Google Scholar 

  • Maggini R, Lehmann A, Kéry M, Schmid H, Beniston M, Jenni L, Zbinden N (2011) Are Swiss birds tracking climate change?: detecting elevational shifts using response curve shapes. Ecol Model 222(1):21–32

    Article  Google Scholar 

  • Magoulick DD, Kobza RM (2003) The role of refugia for fishes during drought: a review and synthesis. Freshw Biol 48(7):1186–1198

    Article  Google Scholar 

  • Martin J, Kitchens W, Hines J (2007) Natal location influences movement and survival of a spatially structured population of snail kites. Oecologia 153(2):291–301

    Article  PubMed  Google Scholar 

  • McKee TB, Doesken NJ, Kleist J (1993) The relationship of drought frequency and duration to time scales. In: Proceedings of the 8th conference on applied Climatology, Boston, MA. American Meteorological Society, vol 17, pp 179–183

  • Mitchell KE, Lohmann D, Houser PR, Wood EF, Schaake JC, Robock A, Cosgrove BA, Bailey AA (2004) The multi-institution North American Land Data Assimilation System (NLDAS): utilizing multiple GCIP products and partners in a continental distributed hydrological modeling system. J Geophys Res: Atmos 109(D7):D07S90

    Google Scholar 

  • Niemuth ND, Dahl AL, Estey ME, Loesch CR (2007) Representation of landcover along breeding bird survey routes in the Northern Plains. J Wildl Manag 71(7):2258–2265

    Article  Google Scholar 

  • Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421(6918):37–42

    Article  CAS  PubMed  Google Scholar 

  • Parmesan C, Root TL, Willig MR (2000) Impacts of extreme weather and climate on terrestrial biota. Bull Am Meteorol Soc 81(3):443–450

    Article  Google Scholar 

  • Perlut NG, Strong AM, Donovan TM, Buckley NJ (2006) Grassland songbirds in a dynamic management landscape: behavioral responses and management strategies. Ecol Appl 16(6):2235–2247

    Article  PubMed  Google Scholar 

  • Peterjohn BG, Sauer JR (1999) Population status of North American grassland birds from the North American breeding bird survey, 1966–1996. Stud Avian Biol 19:27–44

    Google Scholar 

  • Pidgeon AM, Radeloff VC, Mathews NE (2003) Landscape-scale patterns of Black-throated Sparrow (Amphispiza bilineata) abundance and nest success. Ecol Appl 13(2):530–542

    Article  Google Scholar 

  • Pidgeon AM, Radeloff VC, Flather CH, Lepczyk CA, Clayton MK, Hawbaker TJ, Hammer RB (2007) Associations of forest bird species richnes with housing and landscape patterns across the USA. Ecol Appl 17(7):1989–2010

    Article  CAS  PubMed  Google Scholar 

  • Pidgeon AM, Flather CH, Radeloff VC, Lepczyk CA, Keuler NS, Wood EM, Stewart SI, Hammer RB (2014) Systematic temporal patterns in the relationship of housing development with forest bird diversity. Conserv Ecol 28(5):1291–1301

    Google Scholar 

  • Post W, Sanders F, Wood L (2009) The history of Dickcissesl (Spiza americana) nesting on the southeastern coset of North America. Floriday Field Nat 37(2):45–50

    Google Scholar 

  • Prestby TG, Anich NM (2013) The summer of the Dickcissel: 2013. Passeng Pigeon 75(2):155–168

    Google Scholar 

  • Quinn JE, Brandle JR, Johnson RJ (2012) The effects of land sparing and wildlife-friendly practices on grassland bird abundance within organic farmlands. Agric Ecosyst Environ 161:10–16

    Article  Google Scholar 

  • Rahmstorf S, Coumou D (2011) Increase of extreme events in a warming world. Proc Natl Acad Sci 108(44):17905–17909

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Räisänen J (2002) CO2-induced changes in interannual temperature and precipitation variability in 19 CMIP2 experiments. J Clim 15(17):2395–2411

    Article  Google Scholar 

  • Root TL, Price JT, Hall KR, Schneider SH, Rosenzweig C, Pounds JA (2003) Fingerprints of global warming on wild animals and plants. Nature 421(6918):57–60

    Article  CAS  PubMed  Google Scholar 

  • Rummukainen M (2012) Changes in climate and weather extremes in the 21st century. Wiley Interdiscip Rev: Clim Chang 3(2):115–129

    Google Scholar 

  • Salinger M (2005) Climate variability and change: past, present and future—an overview. Clim Chang 70(1):9–29

    Article  CAS  Google Scholar 

  • Sauer JR, Hines JE, Fallon JE, Pardieck KL, Ziolkowski DJJ, Link WA (2012) The North American Breeding Bird Survey, Results and Analysis 1966–2011. USGS Patuxent Wildlife Research Center. In: USGS (ed), 12.13.2011 edn., Laurel, MD

  • Sealy SG (1976) The 1973 Dickcissel invasion of Southern Manitoba. Can Field-Nat 90:464–466

    Google Scholar 

  • Smith RI (1970) Response of pintail breeding populations to drought. J Wildl Manag 34(4):943–946

    Article  Google Scholar 

  • St-Louis V, Pidgeon AM, Radeloff VC, Hawbaker TJ, Clayton MK (2006) High-resolution image texture as a predictor of bird species richness. Remote Sens Environ 105(4):299–312

    Article  Google Scholar 

  • Sullivan BL, Wood CL, Iliff MJ, Bonney RE, Fink D, Kelling S (2009) eBird: a citizen-based bird observation network in the biological sciences. Biol Conserv 142(10):2282–2292

    Article  Google Scholar 

  • Swengel SR (1996) Management responses of three species of declining sparrows in tallgrass prairie. Bird Conserv Int 6(03):241–253

    Article  Google Scholar 

  • Taber RD (1947) The Dickcissel in Wisconsin. Passeng Pigeon 9:39–46

    Google Scholar 

  • Taylor L, Taylor R (1977) Aggregation, migration and population mechanics. Nature 265(5593):415

    Article  CAS  PubMed  Google Scholar 

  • Taylor L, Taylor R, Woiwod I, Perry J (1983) Behavioural dynamics. Nature 303:801–804

    Article  Google Scholar 

  • Temple SA (2002) Dickcissel (Spiza americana). In: Poole A (ed) The birds of North America online. Cornell Lab of Ornithology, Ithica

    Google Scholar 

  • Thibault KM, Brown JH (2008) Impact of an extreme climatic event on community assembly. Proc Natl Acad Sci 105(9):3410–3415

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Thomas CD, Lennon JJ (1999) Birds extend their ranges northwards. Nature 399(6733):213

    Article  CAS  Google Scholar 

  • Thompson RM, Beardall J, Beringer J, Grace M, Sardina P (2013) Means and extremes: building variability into community-level climate change experiments. Ecol Lett 16(6):799–806

    Article  PubMed  Google Scholar 

  • Thuiller W, Albert C, Araújo MB, Berry PM, Cabeza M, Guisan A, Hickler T, Zimmermann NE (2008) Predicting global change impacts on plant species’ distributions: future challenges. Perspect Plant Ecol Evol Syst 9(3–4):137–152

    Article  Google Scholar 

  • Tingley MW, Koo MS, Moritz C, Rush AC, Beissinger SR (2012) The push and pull of climate change causes heterogeneous shifts in avian elevational ranges. Glob Chang Biol 18(11):3279–3290

    Article  Google Scholar 

  • van Wijk RE, Kölzsch A, Kruckenberg H, Ebbinge BS, Müskens GJDM, Nolet BA (2012) Individually tracked geese follow peaks of temperature acceleration during spring migration. Oikos 121(5):655–664

    Article  Google Scholar 

  • Vicente-Serrano SM, Beguería S, López-Moreno JI (2010) A multiscalar drought index sensitive to global warming: the standardized precipitation evapotranspiration index. J Clim 23(7):1696–1718

    Article  Google Scholar 

  • Vogelmann JE, Howard SM, Yang L, Larson CR, Wylie BK, Van Driel N (2001) Completion of the 1990s National Land Cover Data Set for the conterminous United States from Landsat Thematic Mapper data and ancillary data sources. Photogramm Eng Remote Sens 67(6)

  • Walk JW, Wentworth K, Kershner EL, Bollinger EK, Warner RE (2004) Renesting decisions and annual fecundity of female Dickcissels (Spiza americana) in Illinois. Auk 121(4):1250–1261

    Article  Google Scholar 

  • Wang J, Rich PM, Price KP (2003) Temporal responses of NDVI to precipitation and temperature in the central Great Plains, USA. Int J Remote Sens 24(11):2345–2364

    Article  Google Scholar 

  • Wehner M, Easterling DR, Lawrimore JH, Heim RR, Vose RS, Santer BD (2011) Projections of future drought in the continental United States and Mexico. J Hydrometeorol 12(6):1359–1377

    Article  Google Scholar 

  • Wood EM, Pidgeon AM, Radeloff VC, Keuler NS (2013) Image texture predicts avian density and species richness. PLOS One 8(5):e63211

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wooster LD (1935) Notes on the effects of drought on animal population in western Kansas. Trans Kans Acad Sci 1903:351–353

    Article  Google Scholar 

  • Zimmerman JL (1965) Bioenergetics of the Dickcissel, Spiza americana. Physiol Zool 38(4):370–389

    Google Scholar 

  • Zimmerman JL (1971) The territory and its density dependent effect in Spiza americana. Auk 88(3):591–612

    Google Scholar 

Download references

Acknowledgments

We thank the NASA Biodiversity Program and the Climate and Biological Response funding opportunity (NNH10ZDA001N-BIOCLIM) for support of this research. We thank P. Culbert for BBS data extraction, and for providing us with landcover and image texture data. We thank R. Behnke for weather data analysis, C. Flather, J. Gorzo, and T. Albright for ideas and discussions which strengthened our analysis, and all of the volunteers who contribute to the BBS. Any use of trade, product, or firm names are for descriptive purposes only and do not imply endorsement by the U.S. Government. The views expressed in this article are the authors’ own and do not necessarily represent the views of the U.S. Fish and Wildlife Service.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brooke L. Bateman.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 726 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bateman, B.L., Pidgeon, A.M., Radeloff, V.C. et al. The importance of range edges for an irruptive species during extreme weather events. Landscape Ecol 30, 1095–1110 (2015). https://doi.org/10.1007/s10980-015-0212-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10980-015-0212-6

Keywords

Navigation