Landscape Ecology

, Volume 30, Issue 6, pp 1095–1110 | Cite as

The importance of range edges for an irruptive species during extreme weather events

  • Brooke L. Bateman
  • Anna M. Pidgeon
  • Volker C. Radeloff
  • Andrew J. Allstadt
  • H. Resit Akçakaya
  • Wayne E. Thogmartin
  • Stephen J. Vavrus
  • Patricia J. Heglund
Research Article



Threats to wildlife species from extreme events, such as droughts, are predicted to increase in frequency and magnitude with climate change. Extreme events can cause mortality and community-level changes, but for some mobile species, movement away from areas affected may be a viable option.


We examined the effect of extreme weather on spatial patterns of abundance for an irruptive grassland bird species, the Dickcissel (Spiza americana).


We calculated route-level annual abundances and abundance anomalies from 1980 to 2012 from North American Breeding Bird Survey data, and classified the Dickcissel’s range into core and edge regions using these abundances. We then compared abundances in the core and edge regions to the standardized precipitation evapotranspiration index, a measure of drought, in linear regressions.


We found that Dickcissel irruptions in the northern range edges were related to drought conditions in the range core, potentially a consequence of birds being ‘pushed’ to the range edge when weather was unsuitable. Specifically, Dickcissels moved into refuge sites containing a high proportion of cultivated crops, with higher vegetation greenness, than those areas they leave during drought years.


In a changing climate where more frequent extreme weather may be more common, conservation strategies for weather-sensitive species may require consideration of habitat in the edges of species’ ranges, even though non-core areas may be unoccupied in ‘normal’ years. Our results highlight the conservation importance of range edges in providing refuge from extreme events, such as drought, and climate change.


Drought Extreme weather Grassland birds Range edge Range core Refuges 



We thank the NASA Biodiversity Program and the Climate and Biological Response funding opportunity (NNH10ZDA001N-BIOCLIM) for support of this research. We thank P. Culbert for BBS data extraction, and for providing us with landcover and image texture data. We thank R. Behnke for weather data analysis, C. Flather, J. Gorzo, and T. Albright for ideas and discussions which strengthened our analysis, and all of the volunteers who contribute to the BBS. Any use of trade, product, or firm names are for descriptive purposes only and do not imply endorsement by the U.S. Government. The views expressed in this article are the authors’ own and do not necessarily represent the views of the U.S. Fish and Wildlife Service.

Supplementary material

10980_2015_212_MOESM1_ESM.docx (727 kb)
Supplementary material 1 (DOCX 726 kb)


  1. Albright TP, Pidgeon AM, Rittenhouse CD, Clayton MK, Flather CH, Culbert PD, Wardlow BD, Radeloff VC (2010a) Effects of drought on avian community structure. Glob Chang Biol 16(8):2158–2170CrossRefGoogle Scholar
  2. Albright TP, Pidgeon AM, Rittenhouse CD, Clayton MK, Wardlow BD, Flather CH, Culbert PD, Radeloff VC (2010b) Combined effects of heat waves and droughts on avian communities across the conterminous United States. Ecosphere 1(5):Article 12Google Scholar
  3. Albright TP, Pidgeon AM, Rittenhouse CD, Clayton MK, Flather CH, Culbert PD, Radeloff VC (2011) Heat waves measured with MODIS land surface temperature data predict changes in avian community structure. Remote Sens Environ 115(1):245–254CrossRefGoogle Scholar
  4. Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56. FAO, Rome 300:6541Google Scholar
  5. Anderson BJ, Akçakaya HR, Araújo MB, Fordham DA, Martinez-Meyer E, Thuiller W, Brook BW (2009) Dynamics of range margins for metapopulations under climate change. Proc R Soc B 276(1661):1415–1420CrossRefPubMedCentralPubMedGoogle Scholar
  6. Araújo MB, Williams PH (2001) The bias of complementarity hotspots toward marginal populations. Conserv Biol 15(6):1710–1720CrossRefGoogle Scholar
  7. Archaux F, Wolters V (2006) Impact of summer drought on forest biodiversity: what do we know? Ann For Sci 63(6):645–652CrossRefGoogle Scholar
  8. Baraldi A, Parmiggiani F (1995) An investigation of the textural characteristics associated with gray level cooccurrence matrix statistical parameters. IEEE Trans Geosci Remote Sens 33(2):293–304CrossRefGoogle Scholar
  9. Barry JH, Butler LK, Rohwer S, Rohwer VG (2009) Documenting molt-migration in Western Kingbird (Tyrannus verticalis) using two measures of collecting effort. Auk 126(2):260–267CrossRefGoogle Scholar
  10. Basili GD, Temple SA (1999) Dickcissels and crop damage in Venezuela: defining the problem with ecological models. Ecol Appl 9(2):732–739CrossRefGoogle Scholar
  11. Bateman BL, Abell-Davis SE, Johnson CN (2012a) Climate-driven variation in food availability between the core and range edge of the endangered northern bettong (Bettongia tropica). Aust J Zool 59:177–185CrossRefGoogle Scholar
  12. Bateman BL, VanDerWal J, Johnson CN (2012b) Nice weather for bettongs: using weather events, not climate means, in species distribution models. Ecography 35(4):306–314CrossRefGoogle Scholar
  13. Beguería S, Vicente-Serrano SM, Angulo-Martínez M (2010) A multiscalar global drought dataset: the SPEIbase: a new gridded product for the analysis of drought variability and impacts. Bull Am Meteorol Soc 91(10):1351–1356CrossRefGoogle Scholar
  14. Beguería S, Vicente-Serrano SM, Reig F, Latorre B (2014) Standardized precipitation evapotranspiration index (SPEI) revisited: parameter fitting, evapotranspiration models, tools, datasets and drought monitoring. Int J Climatol 34(10):3001–3023CrossRefGoogle Scholar
  15. Bellis LM, Pidgeon AM, Radeloff VC, St-Louis V, Navarro JL, Martella MB (2008) Modeling habitat suitability for greater rheas based on satellite image texture. Ecol Appl 18(8):1956–1966CrossRefPubMedGoogle Scholar
  16. Brook BW, Akçakaya HR, Keith DA, Mace GM, Pearson RG, Araújo MB (2009) Integrating bioclimate with population models to improve forecasts of species extinctions under climate change. Biol Lett 5(6):723–725CrossRefPubMedCentralPubMedGoogle Scholar
  17. Brown JH, Mehlman DW, Stevens GC (1995) Spatial variation in abundance. Ecology 76(7):2028–2043CrossRefGoogle Scholar
  18. Chen I-C, Hill JK, Ohlemüller R, Roy DB, Thomas CD (2011) Rapid range shifts of species associated with high levels of climate warming. Science 333(6045):1024–1026CrossRefPubMedGoogle Scholar
  19. Cormont A, Vos C, van Turnhout C, Foppen R, ter Braak C (2011) Using life-history traits to explain bird population responses to changing weather variability. Clim Res 49(1):59–71CrossRefGoogle Scholar
  20. Coumou D, Rahmstorf S (2012) A decade of weather extremes. Nat Clim Chang 2(7):491–496Google Scholar
  21. Culbert PD, Radeloff VC, St-Louis V, Flather CH, Rittenhouse CD, Albright TP, Pidgeon AM (2012) Modeling broad-scale patterns of avian species richness across the Midwestern United States with measures of satellite image texture. Remote Sens Environ 118:140–150CrossRefGoogle Scholar
  22. Culbert PD, Radeloff VC, Flather CH, Kellndorfer JM, Rittenhouse CD, Pidgeon AM (2013) The influence of vertical and horizontal habitat structure on nationwide patterns of avian biodiversity. Auk 130(4):656–665CrossRefGoogle Scholar
  23. Dai A (2013) Increasing drought under global warming in observations and models. Nat Clim Chang 3:52–58CrossRefGoogle Scholar
  24. Dean W, Barnard P, Anderson M (2009) When to stay, when to go: trade-offs for southern African arid-zone birds in times of drought. S Afr J Sci 105:24–28CrossRefGoogle Scholar
  25. Dechant J, Sondreal M, Johnson D, Igl LD, Goldade CM, Zimmerman AL, Euliss BR (2002) Effects of management practices on grassland birds: Dickcissel. USGS North Prairie Wildl Res Cent 114Google Scholar
  26. Emlen JT, Wiens JA (1965) The Dickcissel invasion of 1964 in southern Wisconsin. Passeng Pigeon 27:51–59Google Scholar
  27. Fay P, Carlisle J, Knapp A, Blair J, Collins S (2003) Productivity responses to altered rainfall patterns in a C4-dominated grassland. Oecologia 137(2):245–251CrossRefPubMedGoogle Scholar
  28. Flather CH, Sauer JR (1996) Using landscape ecology to test hypotheses about large-scale abundance patterns in migratory birds. Ecology 77(1):28–35CrossRefGoogle Scholar
  29. Fox A, Walsh A (2012) Warming winter effects, fat store accumulation and timing of spring departure of Greenland White-fronted Geese Anser albifrons flavirostris from their winter quarters. Hydrobiologia 697(1):95–102CrossRefGoogle Scholar
  30. Frawley BJ, Best LB (1991) Effects of mowing on breeding bird abundance and species composition in alfalfa fields. Wildl Soc Bull 19(2):135–142Google Scholar
  31. Fretwell S (1986) Distribution and abundance of the Dickcissel. Curr Ornithol 4:211–242Google Scholar
  32. Fuguitt GV (1959) Part-time farming and the push-pull hypothesis. Am J Sociol 64(4):375–379CrossRefGoogle Scholar
  33. Gibson SY, Van Der Marel RC, Starzomski BM (2009) Climate change and conservation of leading-edge peripheral populations. Conserv Biol 23(6):1369–1373CrossRefPubMedGoogle Scholar
  34. Goodess CM (2013) How is the frequency, location and severity of extreme events likely to change up to 2060? Environ Sci Policy 27:S4–S14CrossRefGoogle Scholar
  35. Gutschick VP, BassiriRad H (2003) Extreme events as shaping physiology, ecology, and evolution of plants: toward a unified definition and evaluation of their consequences. New Phytol 160(1):21–42CrossRefGoogle Scholar
  36. Guttman NB (1998) Comparing the palmer drought index and the standardized precipitation index. J Am Water Resour Assoc 34(1):113–121CrossRefGoogle Scholar
  37. Hampe A, Petit RJ (2005) Conserving biodiversity under climate change: the rear edge matters. Ecol Lett 8(5):461–467CrossRefPubMedGoogle Scholar
  38. Hardie DC, Hutchings JA (2010) Evolutionary ecology at the extremes of species’ ranges. Environ Rev 18(NA):1–20CrossRefGoogle Scholar
  39. Harlick R, Shanmugam K, Dinstein I (1973) Texture feature for image classification. IEEE Trans Syst Man Cybern 3(6):610–623CrossRefGoogle Scholar
  40. Hitch AT, Leberg PL (2007) Breeding distributions of North American bird species moving north as a result of climate change. Conserv Biol 21(2):534–539CrossRefPubMedGoogle Scholar
  41. Homer C, Dewitz J, Fry J, Coan M, Hossain N, Larson C, Herold N, Wickham J (2007) Completion of the 2001 national land cover database for the counterminous United States. Photogramm Eng Remote Sens 73(4):337Google Scholar
  42. Hurley RJ, Franks EC (1976) Changes in the breeding ranges of two grassland birds. Auk 93(1):108–115Google Scholar
  43. Igl L (1991) The role of climate and mowing on Dickcissel movements, distribution, and abundance. Iowa StateGoogle Scholar
  44. IPCC (2007) Climate change 2007: the physical science basis. In: Solomon S e. a. (ed), Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge, UK, p 996Google Scholar
  45. IPCC (2012) Managing the risks of extreme events and disasters to advance climate change adaptation. In: Field CB, Barros V, Stocker TF, Qin D, Dokken DJ, Ebi KL, Mastrandrea MD, Midgley PM (eds) A special report of working groups I and II of the intergovernmental panel on climate shange. Cambridge University Press, Cambridge, p 582Google Scholar
  46. Jentsch A, Beierkuhnlein C (2008) Research frontiers in climate change: effects of extreme meteorological events on ecosystems. Comptes Rendus Geosci 340(9–10):621–628CrossRefGoogle Scholar
  47. Jentsch A, Kreyling J, Beierkuhnlein C (2007) A new generation of climate-change experiments: events, not trends. Front Ecol Environ 5(7):365–374CrossRefGoogle Scholar
  48. Jiguet F, Julliard R, Thomas CD, Dehorter O, Newson SE, Couvet D (2006) Thermal range predicts bird population resilience to extreme high temperatures. Ecol Lett 9(12):1321–1330CrossRefPubMedGoogle Scholar
  49. Jiménez-Valverde A, Barve N, Lira-Noriega A, Maher SP, Nakazawa Y, papeş M, Soberón J, Sukumaran J, Peterson AT (2011) Dominant climate influences on North American bird distributions. Glob Ecol Biogeogr 20(1):114–118CrossRefGoogle Scholar
  50. Keppel G, Van Niel KP, Wardell-Johnson GW, Yates CJ, Byrne M, Mucina L, Schut AGT, Hopper SD, Franklin SE (2012) Refugia: identifying and understanding safe havens for biodiversity under climate change. Glob Ecol Biogeogr 21(4):393–404CrossRefGoogle Scholar
  51. Kingsolver JG (1989) Weather and the population dynamics of insects: integrating physiological and population ecology. Physiol Zool 62(2):314–334Google Scholar
  52. Koenig WD (2001) Synchrony and periodicity of eruptions by boreal birds. Condor 103(4):725–735CrossRefGoogle Scholar
  53. Koenig WD, Knops JMH (2001) Seed-crop size and eruptions of North American boreal seed-eating birds. J Anim Ecol 70(4):609–620CrossRefGoogle Scholar
  54. Kunkel KE, Bromirski PD, Brooks HE, Cavazos T, Douglas AV, Easterling DR, Emanuel KA, Groisman PYa, Holland GJ, Knutson TR, Kossin JP, Komar PD, Levinson DH, Smith RL (2008) Observed changes in weather and climate extremes in weather and climate extremes in a changing climate. Regions of focus: North America, Hawaii, Caribbean, and U.S. Pacific Islands. In: Karl TR, Meehl GA, Miller CD, Hassol SJ, Waple AM, Murray WL (eds) A report by the U.S. climate change science program and the subcommittee on global change research, Washington, DCGoogle Scholar
  55. Lesica P, Allendorf FW (1995) When are peripheral populations valuable for conservation? Conserv Biol 9(4):753–760CrossRefGoogle Scholar
  56. Luscier JD, Thompson WL (2009) Short-term responses of breeding birds of grassland and early successional habitat to timing of haying in Northwestern Arkansas. Condor 111(3):538–544CrossRefGoogle Scholar
  57. Maggini R, Lehmann A, Kéry M, Schmid H, Beniston M, Jenni L, Zbinden N (2011) Are Swiss birds tracking climate change?: detecting elevational shifts using response curve shapes. Ecol Model 222(1):21–32CrossRefGoogle Scholar
  58. Magoulick DD, Kobza RM (2003) The role of refugia for fishes during drought: a review and synthesis. Freshw Biol 48(7):1186–1198CrossRefGoogle Scholar
  59. Martin J, Kitchens W, Hines J (2007) Natal location influences movement and survival of a spatially structured population of snail kites. Oecologia 153(2):291–301CrossRefPubMedGoogle Scholar
  60. McKee TB, Doesken NJ, Kleist J (1993) The relationship of drought frequency and duration to time scales. In: Proceedings of the 8th conference on applied Climatology, Boston, MA. American Meteorological Society, vol 17, pp 179–183Google Scholar
  61. Mitchell KE, Lohmann D, Houser PR, Wood EF, Schaake JC, Robock A, Cosgrove BA, Bailey AA (2004) The multi-institution North American Land Data Assimilation System (NLDAS): utilizing multiple GCIP products and partners in a continental distributed hydrological modeling system. J Geophys Res: Atmos 109(D7):D07S90Google Scholar
  62. Niemuth ND, Dahl AL, Estey ME, Loesch CR (2007) Representation of landcover along breeding bird survey routes in the Northern Plains. J Wildl Manag 71(7):2258–2265CrossRefGoogle Scholar
  63. Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421(6918):37–42CrossRefPubMedGoogle Scholar
  64. Parmesan C, Root TL, Willig MR (2000) Impacts of extreme weather and climate on terrestrial biota. Bull Am Meteorol Soc 81(3):443–450CrossRefGoogle Scholar
  65. Perlut NG, Strong AM, Donovan TM, Buckley NJ (2006) Grassland songbirds in a dynamic management landscape: behavioral responses and management strategies. Ecol Appl 16(6):2235–2247CrossRefPubMedGoogle Scholar
  66. Peterjohn BG, Sauer JR (1999) Population status of North American grassland birds from the North American breeding bird survey, 1966–1996. Stud Avian Biol 19:27–44Google Scholar
  67. Pidgeon AM, Radeloff VC, Mathews NE (2003) Landscape-scale patterns of Black-throated Sparrow (Amphispiza bilineata) abundance and nest success. Ecol Appl 13(2):530–542CrossRefGoogle Scholar
  68. Pidgeon AM, Radeloff VC, Flather CH, Lepczyk CA, Clayton MK, Hawbaker TJ, Hammer RB (2007) Associations of forest bird species richnes with housing and landscape patterns across the USA. Ecol Appl 17(7):1989–2010CrossRefPubMedGoogle Scholar
  69. Pidgeon AM, Flather CH, Radeloff VC, Lepczyk CA, Keuler NS, Wood EM, Stewart SI, Hammer RB (2014) Systematic temporal patterns in the relationship of housing development with forest bird diversity. Conserv Ecol 28(5):1291–1301Google Scholar
  70. Post W, Sanders F, Wood L (2009) The history of Dickcissesl (Spiza americana) nesting on the southeastern coset of North America. Floriday Field Nat 37(2):45–50Google Scholar
  71. Prestby TG, Anich NM (2013) The summer of the Dickcissel: 2013. Passeng Pigeon 75(2):155–168Google Scholar
  72. Quinn JE, Brandle JR, Johnson RJ (2012) The effects of land sparing and wildlife-friendly practices on grassland bird abundance within organic farmlands. Agric Ecosyst Environ 161:10–16CrossRefGoogle Scholar
  73. Rahmstorf S, Coumou D (2011) Increase of extreme events in a warming world. Proc Natl Acad Sci 108(44):17905–17909CrossRefPubMedCentralPubMedGoogle Scholar
  74. Räisänen J (2002) CO2-induced changes in interannual temperature and precipitation variability in 19 CMIP2 experiments. J Clim 15(17):2395–2411CrossRefGoogle Scholar
  75. Root TL, Price JT, Hall KR, Schneider SH, Rosenzweig C, Pounds JA (2003) Fingerprints of global warming on wild animals and plants. Nature 421(6918):57–60CrossRefPubMedGoogle Scholar
  76. Rummukainen M (2012) Changes in climate and weather extremes in the 21st century. Wiley Interdiscip Rev: Clim Chang 3(2):115–129Google Scholar
  77. Salinger M (2005) Climate variability and change: past, present and future—an overview. Clim Chang 70(1):9–29CrossRefGoogle Scholar
  78. Sauer JR, Hines JE, Fallon JE, Pardieck KL, Ziolkowski DJJ, Link WA (2012) The North American Breeding Bird Survey, Results and Analysis 1966–2011. USGS Patuxent Wildlife Research Center. In: USGS (ed), 12.13.2011 edn., Laurel, MDGoogle Scholar
  79. Sealy SG (1976) The 1973 Dickcissel invasion of Southern Manitoba. Can Field-Nat 90:464–466Google Scholar
  80. Smith RI (1970) Response of pintail breeding populations to drought. J Wildl Manag 34(4):943–946CrossRefGoogle Scholar
  81. St-Louis V, Pidgeon AM, Radeloff VC, Hawbaker TJ, Clayton MK (2006) High-resolution image texture as a predictor of bird species richness. Remote Sens Environ 105(4):299–312CrossRefGoogle Scholar
  82. Sullivan BL, Wood CL, Iliff MJ, Bonney RE, Fink D, Kelling S (2009) eBird: a citizen-based bird observation network in the biological sciences. Biol Conserv 142(10):2282–2292CrossRefGoogle Scholar
  83. Swengel SR (1996) Management responses of three species of declining sparrows in tallgrass prairie. Bird Conserv Int 6(03):241–253CrossRefGoogle Scholar
  84. Taber RD (1947) The Dickcissel in Wisconsin. Passeng Pigeon 9:39–46Google Scholar
  85. Taylor L, Taylor R (1977) Aggregation, migration and population mechanics. Nature 265(5593):415CrossRefPubMedGoogle Scholar
  86. Taylor L, Taylor R, Woiwod I, Perry J (1983) Behavioural dynamics. Nature 303:801–804CrossRefGoogle Scholar
  87. Temple SA (2002) Dickcissel (Spiza americana). In: Poole A (ed) The birds of North America online. Cornell Lab of Ornithology, IthicaGoogle Scholar
  88. Thibault KM, Brown JH (2008) Impact of an extreme climatic event on community assembly. Proc Natl Acad Sci 105(9):3410–3415CrossRefPubMedCentralPubMedGoogle Scholar
  89. Thomas CD, Lennon JJ (1999) Birds extend their ranges northwards. Nature 399(6733):213CrossRefGoogle Scholar
  90. Thompson RM, Beardall J, Beringer J, Grace M, Sardina P (2013) Means and extremes: building variability into community-level climate change experiments. Ecol Lett 16(6):799–806CrossRefPubMedGoogle Scholar
  91. Thuiller W, Albert C, Araújo MB, Berry PM, Cabeza M, Guisan A, Hickler T, Zimmermann NE (2008) Predicting global change impacts on plant species’ distributions: future challenges. Perspect Plant Ecol Evol Syst 9(3–4):137–152CrossRefGoogle Scholar
  92. Tingley MW, Koo MS, Moritz C, Rush AC, Beissinger SR (2012) The push and pull of climate change causes heterogeneous shifts in avian elevational ranges. Glob Chang Biol 18(11):3279–3290CrossRefGoogle Scholar
  93. van Wijk RE, Kölzsch A, Kruckenberg H, Ebbinge BS, Müskens GJDM, Nolet BA (2012) Individually tracked geese follow peaks of temperature acceleration during spring migration. Oikos 121(5):655–664CrossRefGoogle Scholar
  94. Vicente-Serrano SM, Beguería S, López-Moreno JI (2010) A multiscalar drought index sensitive to global warming: the standardized precipitation evapotranspiration index. J Clim 23(7):1696–1718CrossRefGoogle Scholar
  95. Vogelmann JE, Howard SM, Yang L, Larson CR, Wylie BK, Van Driel N (2001) Completion of the 1990s National Land Cover Data Set for the conterminous United States from Landsat Thematic Mapper data and ancillary data sources. Photogramm Eng Remote Sens 67(6)Google Scholar
  96. Walk JW, Wentworth K, Kershner EL, Bollinger EK, Warner RE (2004) Renesting decisions and annual fecundity of female Dickcissels (Spiza americana) in Illinois. Auk 121(4):1250–1261CrossRefGoogle Scholar
  97. Wang J, Rich PM, Price KP (2003) Temporal responses of NDVI to precipitation and temperature in the central Great Plains, USA. Int J Remote Sens 24(11):2345–2364CrossRefGoogle Scholar
  98. Wehner M, Easterling DR, Lawrimore JH, Heim RR, Vose RS, Santer BD (2011) Projections of future drought in the continental United States and Mexico. J Hydrometeorol 12(6):1359–1377CrossRefGoogle Scholar
  99. Wood EM, Pidgeon AM, Radeloff VC, Keuler NS (2013) Image texture predicts avian density and species richness. PLOS One 8(5):e63211CrossRefPubMedCentralPubMedGoogle Scholar
  100. Wooster LD (1935) Notes on the effects of drought on animal population in western Kansas. Trans Kans Acad Sci 1903:351–353CrossRefGoogle Scholar
  101. Zimmerman JL (1965) Bioenergetics of the Dickcissel, Spiza americana. Physiol Zool 38(4):370–389Google Scholar
  102. Zimmerman JL (1971) The territory and its density dependent effect in Spiza americana. Auk 88(3):591–612Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Brooke L. Bateman
    • 1
  • Anna M. Pidgeon
    • 1
  • Volker C. Radeloff
    • 1
  • Andrew J. Allstadt
    • 1
  • H. Resit Akçakaya
    • 2
  • Wayne E. Thogmartin
    • 3
  • Stephen J. Vavrus
    • 4
  • Patricia J. Heglund
    • 5
  1. 1.SILVIS Lab, Department of Forest and Wildlife EcologyUniversity of Wisconsin-MadisonMadisonUSA
  2. 2.Department of Ecology and EvolutionStony Brook UniversityStony BrookUSA
  3. 3.Upper Midwest Environmental Sciences CenterUnited States Geological SurveyLa CrosseUSA
  4. 4.Center for Climate ResearchUniversity of Wisconsin-MadisonMadisonUSA
  5. 5.Upper Midwest Environmental Sciences CenterUnited States Fish and Wildlife ServiceLa CrosseUSA

Personalised recommendations