Testing biodiversity-ecosystem functioning relationship in the world’s largest grassland: overview of the IMGRE project

Abstract

Context

The relationship between biodiversity and ecosystem functioning (BEF) is a central topic in ecology on local, regional, and global scales. A powerful approach to BEF studies is large-scale field manipulative experimentation.

Objectives

The Inner Mongolian Grassland Removal Experiment (IMGRE) was designed to examine the mechanisms of the BEF relationship in the world’s largest grassland, explicitly considering multiple trophic levels and grazing by grasshoppers and sheep.

Methods

IMGRE followed a randomized block design, with a total of 512 plots (6 m × 6 m each). The project involved massive field campaigns and laboratory analyses, and unprecedentedly employed two removal protocols in parallel: complete removal (eradicating all targeted functional types) and partial removal (an equal-disturbance removal scheme).

Results

We summarize key findings on aboveground and belowground primary production, functional richness, identity, and composition, compensation at the species, PFT, and community levels, soil water and N retention, net N mineralization, microbial biomass, and grazing by grasshoppers and sheep. Comparing and contrasting results from the two removal protocols, we have found that the responses of ecosystem processes depend on plant functional richness and identity, as well as disturbance characteristics.

Conclusions

As part of the special issue on the ecological patterns and processes in the Inner Mongolian Plateau, this article provides an overview of the IMGRE project. The findings of this project shed new light on the BEF relationship in natural grasslands, and have important implications for ecosystem management in the Mongolian Plateau.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

References

  1. Bai Y, Han X, Wu J, Chen Z, Li L (2004) Ecosystem stability and compensatory effects in the Inner Mongolia grassland. Nature 431:181–184

    CAS  Article  PubMed  Google Scholar 

  2. Bai YF, Wu J, Pan QM, Huang JH, Wang QB, Li FS, Buyantuyev A, Han XG (2007) Positive linear relationship between productivity and diversity: evidence from the Eurasian Steppe. J Appl Ecol 44(5):1023–1034

    Article  Google Scholar 

  3. Bai Y, Wu JG, Clark CM, Naeem S, Pan Q, Huang J, Zhang L, Han X (2010) Tradeoffs and thresholds in the effects of nitrogen addition on biodiversity and ecosystem functioning: evidence from Inner Mongolia grasslands. Glob Change Biol 16(1):358–372

    Article  Google Scholar 

  4. Cadotte MW (2013) Experimental evidence that evolutionarily diverse assemblages result in higher productivity. PNAS 110:8996–9000

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  5. Cardinale BJ, Duffy JE, Gonzalez A, Hooper DU, Perrings C, Venail P, Narwani A, Mace GM, Tilman D, Wardle DA, Kinzig AP, Daily GC, Loreau M, Grace JB, Larigauderie A, Srivastava DS, Naeem S (2012) Biodiversity loss and its impact on humanity. Nature 486:59–67

    CAS  Article  PubMed  Google Scholar 

  6. Cease AJ, Hao SG, Kang L, Elser JJ, Harrison JF (2010) Are color or high rearing density related to migratory polyphenism in the band-winged grasshopper, Oedaleus asiaticus? J Insect Physiol 56(8):926–936

    CAS  Article  PubMed  Google Scholar 

  7. Cease AJ, Elser JJ, Ford CF, Hao SG, Kang L, Harrison JF (2012) Heavy livestock grazing promotes locust outbreaks by lowering plant nitrogen content. Science 335(6067):467–469

    CAS  Article  PubMed  Google Scholar 

  8. Díaz S, Symstad AJ, Chapin FS III, Wardle DA, Huenneke LF (2003) Functional diversity revealed by removal experiments. Trends Ecol Evol 18:140–146

    Article  Google Scholar 

  9. Downing AL, Liebold MA (2002) Ecosystem consequences of species richness and composition in pond food webs. Nature 416:837–841

    CAS  Article  PubMed  Google Scholar 

  10. Duffy JE (2002) Biodiversity and ecosystem function: the consumer connection. Oikos 99:201–219

    Article  Google Scholar 

  11. Duffy JE, McDonald SK, Rhode JM, Parker JD (2001) Grazer diversity, functional redundancy, and productivity in seagrass beds: an experimental test. Ecology 82:2417–2434

    Article  Google Scholar 

  12. Ehleringer JR, Dawson TE (1992) Water-uptake by plants: perspectives from stable isotope composition. Plant Cell Environ 15:1073–1082

    CAS  Article  Google Scholar 

  13. Elser JJ, Sterner RW, Gorokhova E, Fagan WF, Markow TA, Cotner JB, Harrison JF, Hobbie SE, Odell GM, Weider LW (2001) Biological stoichiometry from genes to ecosystems. Ecol Lett 3:540–550

    Article  Google Scholar 

  14. Flynn DFB, Mirotchnick N, Jain M, Palmer MI, Naeem S (2011) Functional and phylogenetic diversity as predictors of biodiversity–ecosystem-function relationships. Ecology 92:1573–1581

    Article  PubMed  Google Scholar 

  15. Fridley JD (2003) Diversity effects on production in different light and fertility environments: an experiment with communities of annual plants. J Ecol 91(3):396–406

    Article  Google Scholar 

  16. Heemsbergen DA, Berg MP, Loreau M, van Hal JR, Faber JH, Verhoef HA (2004) Biodiversity effects on soil processes explained by interspecific functional dissimilarity. Science 306(5698):1019–1020

    CAS  Article  PubMed  Google Scholar 

  17. Hooper DU (1998) The role of complementarity and competition in ecosystem responses to variation in plant diversity. Ecology 79(2):704–719

    Article  Google Scholar 

  18. Hooper DU, Vitousek PM (1998) Effects of plant composition and diversity on nutrient cycling. Ecol Monogr 68:121–149

    Article  Google Scholar 

  19. Hooper DU, Chapin FS III, Ewel JJ, Hector A, Inchausti P, Lavorel S, Lawton JH, Lodge DM, Loreau M, Naeem S, Schmid B, Setala H, Symstad AJ, Vandermeer J, Wardle DA (2005) Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol Monogr 75:3–35

    Article  Google Scholar 

  20. Hooper DU, Adair EC, Cardinale BJ, Byrnes JE, Hungate BA, Matulich KL, Gonzalez A, Duffy JE, Gamfeldt L, O’Connor MI (2012) A global synthesis reveals biodiversity loss as a major driver of ecosystem change. Nature 486:105–108

    CAS  PubMed  Google Scholar 

  21. Huston MA (1997) Hidden treatments in ecological experiments: re-evaluating the ecosystem function of biodiversity. Oecologia 110(5):449–460

    Article  Google Scholar 

  22. Li A, Wu JG, Huang JH (2012) Distinguishing between human-induced and climate-driven vegetation changes: a critical application of RESTREND in Inner Mongolia. Landscape Ecol 27(7):969–982

    CAS  Article  Google Scholar 

  23. Liu W, Wand JM, Wang ZP (2011) Plant functional type effects on methane uptake by soils in typical grasslands of Inner Mongolia. Chin J Plant Ecol 35:275–283

    Article  Google Scholar 

  24. Loreau M (1998) Biodiversity and ecosystem functioning: A mechanistic model. Proc Natl Acad Sci 95:5632–5636

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  25. Loreau M (2000) Biodiversity and ecosystem functioning: recent theoretical advances. Oikos 91(1):3–17

    Article  Google Scholar 

  26. Loreau M, Hector A (2001) Partitioning selection and complementarity in biodiversity experiments. Nature 412:72–76

    CAS  Article  PubMed  Google Scholar 

  27. Loreau M, Naeem S, Inchausti P (eds) (2002) Biodiversity and ecosystem functioning: synthesis and perspectives. Oxford University Press, Oxford

    Google Scholar 

  28. McNaughton SJ (1977) Diversity and stability of ecological communities: a comment on the role of empiricism in ecology. Am Nat 111:515–525

    Article  Google Scholar 

  29. MEA (2005) Ecosystems and human well-being: current state and trends. Island Press, Washington

    Google Scholar 

  30. Mulder CPH, Koricheva J, Huss-Danell K, Högberg P, Joshi J (1999) Insects affect relationships between plant species richness and ecosystem processes. Ecol Lett 2:237–246

    Article  Google Scholar 

  31. Naeem S (2002a) Disentangling the impacts of diversity on ecosystem functioning in combinatorial experiments. Ecology 83:2925–2935

    Article  Google Scholar 

  32. Naeem S (2002b) Ecosystem consequences of biodiversity loss: the evolution of a paradigm. Ecology 83:1537–1552

    Article  Google Scholar 

  33. Naeem S, Li S (1997) Biodiversity enhances ecosystem reliability. Nature 390:507–509

    CAS  Article  Google Scholar 

  34. Naeem S, Wright JP (2003) Disentangling biodiversity effects on ecosystem functioning: deriving solutions to a seemingly insurmountable problem. Ecol Lett 6:567–579

    Article  Google Scholar 

  35. Naeem S, Thompson LJ, Lawler SP, Lawton JH, Woodfin RM (1994) Declining biodiversity can alter the performance of ecosystems. Nature 368:734–737

    Article  Google Scholar 

  36. Naeem S, Bunker DE, Hector A, Loreau M, Perrings C (eds) (2009) Biodiversity, ecosystem functioning, and human wellbeing: an ecological and economic perspective. Oxford University Press, Oxford

    Google Scholar 

  37. Naeem S, Duffy JE, Zavaleta E (2012) The functions of biological diversity in an age of extinction. Science 336(6087):1401–1406

    CAS  Article  PubMed  Google Scholar 

  38. Norberg J (2000) Resource-niche complementarity and autotrophic compensation determines ecosystem-level responses to increased cladoceran species richness. Oecologia 122:264–272

    Article  Google Scholar 

  39. Pan QM, Bai YF, Wu JG, Han XG (2011) Hierarchical plant responses and diversity loss after nitrogen addition: testing three functionally-based hypotheses in the Inner Mongolia grassland. Plos One 6(5):ARTN e20078. doi:10.1371/journal.pone.0020078

  40. Petchey OL, Hector A, Gaston KJ (2004) How do different measures of functional diversity perform? Ecology 85:847–857

    Article  Google Scholar 

  41. Pfisterer AB, Schmid B (2002) Diversity-dependent production can decrease the stability of ecosystem functioning. Nature 416:84–86

    CAS  Article  PubMed  Google Scholar 

  42. Pimm SL (1984) The complexity and stability of ecosystems. Nature 307:321–326

    Article  Google Scholar 

  43. Solan M, Cardinale BJ, Downing AL, Engelhardt KAM, Ruesink JL, Srivastava DS (2004) Extinction and ecosystem function in the marine benthos. Science 306:1177–1180

    CAS  Article  PubMed  Google Scholar 

  44. Srivastava DS, Vellend M (2005) Biodiversity-ecosystem function research: is it relevant to conservation? Annu Rev Ecol Evol Syst 36:267–290

    Article  Google Scholar 

  45. Sterner RW, Elser JJ (2002) Ecological stoichiometry: the biology of elements from molecules to the biosphere. Princeton University Press, Princeton

    Google Scholar 

  46. Su YY, Guo LD, Hyde KD (2010) Response of endophytic fungi of Stipa grandis to experimental plant function group removal in Inner Mongolia steppe, China. Fungal Divers 43(1):93–101

    Article  Google Scholar 

  47. Sun XF, Huang JH, Wang M, Han XG (2009) Responses of litter decomposition to biodiversity manipulation in the Inner Mongolia grassland of China. Biodivers Sci 17:397–405

    CAS  Article  Google Scholar 

  48. Symstad A, Tilman D (2001) Diversity loss, recruitment limitation, and ecosystem functioning: lessons learned from a removal experiment. Oikos 92:424–435

    Article  Google Scholar 

  49. Symstad AJ, Chapin FS, Wall DH et al (2003) Long-term and large-scale perspectives on the relationship between biodiversity and ecosystem functioning. Bioscience 53(1):89–98

    Article  Google Scholar 

  50. Tilman D (1997) Distinguishing the effects of species diversity and species composition. Oikos 80:185

    Article  Google Scholar 

  51. Tilman D (1999) The ecological consequences of changes in biodiversity: a search for general principles. Ecology 80(5):1455–1474

    Google Scholar 

  52. Tilman D, Wedin D, Knops J (1996) Productivity and sustainability influenced by biodiversity in grassland ecosystems. Nature 379:718–720

    CAS  Article  Google Scholar 

  53. Wardle DA (2002) Communities and ecosystems: linking the aboveground and belowground components. Princeton University Press, Princeton

    Google Scholar 

  54. Wardle DA, Grime JP (2003) Biodiversity and stability of grassland ecosystem functioning. Oikos 100(3):622–623

    Article  Google Scholar 

  55. Wardle DA, Bonner KI, Barker GM et al (1999) Plant removals in perennial grassland: Vegetation dynamics, decomposers, soil biodiversity, and ecosystem properties. Ecol Monogr 69:535–568

    Article  Google Scholar 

  56. Wardle DA, Bardgett RD, Klironomos JN, Setala H, van der Putten WH, Wall DH (2004a) Ecological linkages between aboveground and belowground biota. Science 304(5677):1629–1633

    CAS  Article  PubMed  Google Scholar 

  57. Wardle DA, Walker LR, Bardgett RD (2004b) Ecosystem properties and forest decline in contrasting long-term chronosequences. Science 305(5683):509–513

    CAS  Article  PubMed  Google Scholar 

  58. Wu J (2013) Landscape sustainability science: ecosystem services and human well-being in changing landscapes. Landscape Ecol 28(6):999–1023

    Article  Google Scholar 

  59. Wu J, Loucks OL (1992) Xilingole grassland. In: US National Research Council (ed) Grasslands and grassland sciences in Northern China. National Academy Press, Washington, pp 67–84

    Google Scholar 

  60. Wu J, Loucks OL (1995) From balance of nature to hierarchical patch dynamics: a paradigm shift in ecology. Q Rev Biol 70(4):439–466

    Article  Google Scholar 

  61. Wu J, Bai Y, Han X, Li L, Chen Z (2005) Ecosystem stability in Inner Mongolia. Nature 435:E6–E7. doi:10.1038/nature03584

    CAS  Article  Google Scholar 

  62. Yu Q, Chen Q, Elser JJ, He N, Wu H, Zhang G, Wu J, Bai Y, Han X (2010) Linking stoichiometric homeostasis with ecosystem structure, functioning, and stability. Ecol Lett 13:1390–1399

    Article  PubMed  Google Scholar 

  63. Yuan F, Wu J, Li A, Rowe H, Bai Y, Huang J, Han X (2015) Spatiotemporal patterns of soil nutrients, plant diversity, and aboveground biomass during a biodiversity removal experiment in Inner Mongolia. Landscape Ecol 30. doi:10.1007/s10980-015-0154-z

  64. Zhang GM, Han XG, Elser JJ (2011) Rapid top-down regulation of plant C:N:P stoichiometry by grasshoppers in an Inner Mongolia grassland ecosystem. Oecologia 166(1):253–264

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The IMGRE research was supported by National Science Foundation (NSF, DEB-0618193) as well as grants from National Natural Science Foundation of China (NSFC), and Chinese Academy of Sciences (CAS). Any opinions, findings and conclusions or recommendations expressed in this publication are those of the authors and do not necessarily reflect the views of NSF, NSFC, or CAS. We thank all our collaborators and graduate students from both the Chinese and American institutions for their participation in the IMGRE project. Also, comments from two anonymous reviewers are greatly appreciated.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jianguo Wu.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wu, J., Naeem, S., Elser, J. et al. Testing biodiversity-ecosystem functioning relationship in the world’s largest grassland: overview of the IMGRE project. Landscape Ecol 30, 1723–1736 (2015). https://doi.org/10.1007/s10980-015-0155-y

Download citation

Keywords

  • Biodiversity and ecosystem functioning relationship
  • BEF removal experiments
  • Ecological stoichiometry
  • Plant functional types
  • Inner Mongolian grasslands