Skip to main content

Advertisement

Log in

Functional beetle diversity in managed grasslands: effects of region, landscape context and land use intensity

  • Research Article
  • Published:
Landscape Ecology Aims and scope Submit manuscript

Abstract

Current biodiversity conservation policies have so far had limited success because they are mainly targeted to the scale of individual fields with little concern on different responses of organism groups at larger spatial scales. We investigated the relative impacts of multi-scale factors, including local land use intensity, landscape context and region, on functional groups of beetles (Coleoptera). In 2008, beetles were suction-sampled from 95 managed grasslands in three regions, ranging from Southern to Northern Germany. The results showed that region was the most important factor affecting the abundance of herbivores and the abundance and species composition of predators and decomposers. Herbivores were not affected by landscape context and land use intensity. The species composition of the predator communities changed with land use intensity, but only in interaction with landscape context. Interestingly, decomposer abundance was negatively related to land use intensity in low-diversity landscapes, whereas in high-diversity landscapes the relation was positive, possibly due to enhanced spillover effects in complex landscapes. We conclude that (i) management at multiple scales, from local sites to landscapes and regions, is essential for managing biodiversity, (ii) beetle predators and decomposers are more affected than herbivores, supporting the hypothesis that higher trophic levels are more sensitive to environmental change, and (iii) sustaining biological control and decomposition services in managed grassland needs a diverse landscape, while effects of local land use intensity may depend on landscape context.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Altieri MA (1999) The ecological role of biodiversity in agroecosystems. Agric Ecosyst Environ 74:19–31

    Article  Google Scholar 

  • Aviron S, Burel F, Baudry J, Schermann N (2005) Carabid assemblages in agricultural landscapes: impacts of habitat features, landscape context at different spatial scales and farming intensity. Agric Ecosyst Environ 108:205–217

    Article  Google Scholar 

  • Barragán F, Moreno CE, Escobar F, Halffter G, Navarrete D (2011) Negative impacts of human land use on Dung Beetle functional diversity. PLoS One 6:e17976

    Article  PubMed Central  PubMed  Google Scholar 

  • Bassa M, Boutin C, Chamorro L, Sans FX (2011) Effects of farming management and landscape heterogeneity on plant species composition of Mediterranean field boundaries. Agric Ecosyst Environ 141:455–460

    Article  Google Scholar 

  • Batáry P, Báldi A, Szé G, Podlussány A, Rozner I, Erdős S (2007) Responses of grassland specialist and generalist beetles to management and landscape complexity. Divers Distrib 13:196–202

    Article  Google Scholar 

  • Batáry P, Báldi A, Kleijn D, Tscharntke T (2011) Landscape-moderated biodiversity effects of agri-environmental management: a meta-analysis. Proc R Soc B 278:1894–1902

    Article  PubMed  Google Scholar 

  • Bengtsson J, Ahnström J, Weibull AC (2005) The effects of organic agriculture on biodiversity and abundance: a meta-analysis. J Appl Ecol 42:261–269

    Article  Google Scholar 

  • Blake S, Foster GN, Eyre MD, Luff ML (1994) Effects of habitat type and grassland management practices on the body size distribution of carabid beetles. Pedobiologia 38:502–512

    Google Scholar 

  • Blüthgen N, Dormann CF, Prati D, Klaus VH, Kleinebecker T, Hölzel N, Alt F, Boch S, Gockel S, Hemp A, Müller J, Nieschulze J, Renner SC, Schöning I, Schumacher U, Socher SA, Wells K, Birkhofer K, Buscot F, Oelmann Y, Rothenwöhrer C, Scherber C, Tscharntke T, Weiner CN, Fischer M, Kalko EKV, Linsenmair KE, Schulze ED, Weisser WW (2012) A quantitative index of land-use intensity in grasslands: integrating mowing, grazing and fertilization. Basic Appl Ecol 13:207–220

    Article  Google Scholar 

  • Böhme J (2001) Phytophage Käfer und ihre Wirtspflanzen in Mitteleuropa: ein Kompendium. Bioform, Heroldsberg

    Google Scholar 

  • Bommarco R, Kleijn D, Potts SG (2013) Ecological intensification: harnessing ecosystem services for food security. Trends Ecol Evol 28:230–238

    Article  PubMed  Google Scholar 

  • Borges PAV, Brown VK (2003) Estimating species richness of arthropods in Azorean pastures: the adequacy of suction sampling and pitfall trapping. Graellsia 59:7–24

    Article  Google Scholar 

  • Brook A, Woodcock B, Sinka M, Vanbergen A (2008) Experimental verification of suction sampler capture efficiency in grasslands of differing vegetation height and structure. J Appl Ecol 45:1357–1363

    Article  Google Scholar 

  • Caley MJ, Schluter D (1997) The relationship between local and regional diversity. Ecology 78:70–80

    Article  Google Scholar 

  • Chan KMA, Shaw MR, Cameron DR, Underwood EC, Daily GC (2006) Conservation planning for ecosystem services. PLoS Biol 4:e379

    Article  PubMed Central  PubMed  Google Scholar 

  • Clough Y, Kruess A, Kleijn D, Tscharntke T (2005) Spider diversity in cereal fields: comparing factors at local, landscape and regional scales. J Biogeogr 32:2007–2014

    Article  Google Scholar 

  • Clough Y, Kruess A, Tscharntke T (2007) Organic versus conventional arable farming systems: functional grouping helps understand staphylinid response. Agric Ecosyst Environ 118:285–290

    Article  Google Scholar 

  • Cole LJ, McCracken DI, Nennis P, Downie IS, Griffin AL, Foster GN, Murphy KJ, Waterhouse T (2002) Relationships between agricultural management and ecological groups of ground beetles (Coleoptera: Carabidae) on Scottish farmland. Agric Ecosyst Environ 93:323–336

    Article  Google Scholar 

  • Colwell RK (2013) EstimateS: statistical estimation of species richness and shared species from samples. Version 9. http://purl.oclc.org/estimates Accessed 16 Sep 2013

  • Concepción ED, Díaz M (2011) Field, landscape and regional effects of farmland management on specialist open-land birds: does body size matter? Agric Ecosyst Environ 142:303–310

    Article  Google Scholar 

  • Concepción ED, Díaz M, Baquero RA (2008) Effects of landscape complexity on the ecological effectiveness of agri-environment schemes. Landscape Ecol 23:135–148

    Article  Google Scholar 

  • Concepción ED, Díaz M, Kleijn D, Báldi A, Batáry P, Clough Y, Gabriel D, Herzog F, Holzschuh A, Knop E, Marshall EJP, Tscharntke T, Verhulst J (2012) Interactive effects of landscape context constrain the effectiveness of local agri-environmental management. J Appl Ecol 49:695–705

    Google Scholar 

  • Dennis P, Young MR, Gordon IJ (1998) Distribution and abundance of small insects and arachnids in relation to structural heterogeneity of grazed, indigenous grasslands. Ecol Entomol 23:253–264

    Article  Google Scholar 

  • Díaz S, Lavorel S, de Bello F, Quetier F, Grigulis K, Robson TM (2007) Incorporating plant functional diversity effects in ecosystem service assessments. Proc Natl Acad Sci USA 104:20684–20689

    Article  PubMed  Google Scholar 

  • Driscoll DA, Weir T (2005) Beetle responses to habitat fragmentation depend on ecological traits, habitat condition and remnant size. Conserv Biol 19:182–194

    Article  Google Scholar 

  • Duelli P, Obrist MK (2003) Regional biodiversity in an agricultural landscape: the contribution of seminatural habitat islands. Basic Appl Ecol 4:129–138

    Article  Google Scholar 

  • Fischer M, Bossdorf O, Gockel S, Hänsel F, Hemp A, Hessenmöller D, Korte G, Nieschulze J, Pfeiffer S, Prati D, Renner S, Schöning I, Schumacher U, Wells K, Buscot F, Kalko EKV, Linsenmair KE, Schulze ED, Weisser WW (2010) Implementing large-scale and long-term functional biodiversity research: the biodiversity exploratories. Basic Appl Ecol 11:473–485

    Article  Google Scholar 

  • Fournier E, Loreau M (2001) Respective roles of recent hedges and forest patch remnants in the maintenance of ground-beetle, Coleoptera: Carabidae. diversity in an agricultural landscape. Landscape Ecol 16:17–32

    Article  Google Scholar 

  • Gard TC (1984) Persistence in food webs. In: Levin SA, Hallam TG (eds) Mathematical Ecology. Springer, Berlin, pp 208–219

    Chapter  Google Scholar 

  • Gardiner MM, Landis DA, Gratton C, Schmidt N, O’Neal M, Mueller E, Chacon J, Heimpel GE, DiFonzo CD (2009) Landscape composition influences patterns of native and exotic lady beetle abundance. Divers Distrib 15:554–564

    Article  Google Scholar 

  • Grandchamp AC, Bergamini A, Stofer S, Niemelä J, Duelli P, Scheidegger C (2005) The influence of grassland management on ground beetles, Carabidae, Coleoptera in Swiss montane meadows. Agric Ecosyst Environ 110:307–317

    Article  Google Scholar 

  • Greenleaf S, Williams N, Winfree R, Kremen C (2007) Bee foraging ranges and their relationship to body size. Oecologia 153:589–596

    Article  PubMed  Google Scholar 

  • Henle K, Davies KF, Kleyer M, Margules C, Settele J (2004) Predictors of species sensitivity to fragmentation. Biodivers Conserv 13:207–251

    Article  Google Scholar 

  • Hoebeke ER, Byers RA, Alonso-Zarazaga MA, Stimmel JF (2000) Ischnopterapion (Chlorapion) virens (Herbst) (Coleoptera: Curculionoidea: Brentidae: Apioninae), a Palearctic clover pest new to North America: recognition features, distribution, and bionomics. P Entomol Soc Wash 102:151–161

    Google Scholar 

  • Holt RD (1996) Food webs in space: an island biogeographic perspective. In: Polis GA, Winemiller KO (eds) Food webs: integration of patterns and dynamics. Chapman & Hall, New York, pp 313–323

    Chapter  Google Scholar 

  • Hutton SA, Giller PS (2003) The effects of the intensification of agriculture on northern temperate dung beetle communities. J Appl Ecol 40:994–1007

    Article  Google Scholar 

  • Jonsen ID, Fahrig L (1997) Response of generalist and specialist insect herbivores to landscape spatial structure. Landscape Ecol 12:85–197

    Article  Google Scholar 

  • Kennedy TF (1994) The ecology of Bembidion obtusum (Ser.) (Coleoptera: Carabidae) in winter wheat fields in Ireland. Biol Environ 94B:33–40

    Google Scholar 

  • Kleijn D, Baquero RA, Clough Y, Diaz M, De Esteban J, Fernandez F, Gabriel D, Herzog F, Holzschuh A, Johl R, Knop E, Kruess A, Marshall EJ, Steffan-Dewenter I, Tscharntke T, Verhulst J, West TM, Yela JL (2006) Mixed biodiversity benefits of agri-environment schemes in five European countries. Eco Lett 9:243–254

    Article  CAS  Google Scholar 

  • Koch K (1989a) Die Käfer Mitteleuropas. Ökologie Bds. 1. Goecke & Evers, Krefeld

    Google Scholar 

  • Koch K (1989b) Die Käfer Mitteleuropas. Ökologie Bds. 2. Goecke & Evers, Krefeld

    Google Scholar 

  • Koch K (1992) Die Käfer Mitteleuropas. Ökologie Bds. 3. Goecke & Evers, Krefeld

    Google Scholar 

  • Kruess A, Tscharntke T (2002) Contrasting responses of plant and insect diversity to variation in grazing intensity. Biol Conserv 106:293–302

    Article  Google Scholar 

  • Lavorel S, Grigulis K, Lamarque P, Colace MP, Garden D, Girel J, Pellet G, Douzet R (2011) Using plant functional traits to understand the landscape distribution of multiple ecosystem services. J Ecol 99:135–147

    Article  Google Scholar 

  • Legendre P, Gallagher ED (2001) Ecologically meaningful transformations for ordination of species data. Oecologia 129:271–280

    Article  Google Scholar 

  • Lövei GL, Magura T (2006) Body size changes in ground beetle assemblages-a reanalysis of Braun (2004)’s data. Ecol Entomol 31:411–414

    Article  Google Scholar 

  • Matson PA, Parton WJ, Power A, Swift M (1997) Agricultural intensification and ecosystem properties. Science 277:504–509

    Article  CAS  PubMed  Google Scholar 

  • McGarigal K, Cushman SA, Neel MC, Ene E (2002) FRAGSTATS v3: spatial pattern analysis program for categorical maps. Computer software program produced by the authors at the University of Massachusetts, Amherst. http://www.umass.edu/landeco/research/fragstats/fragstats.html. Accessed Jun 2012

  • MEA (2005) Millenium ecosystem assessment. Island Press, Washington

    Google Scholar 

  • Millán de la Peña N, Butet A, Delettre Y, Morant P, Burel F (2003) Landscape context and carabid beetles, Coleoptera: Carabidae. communities of hedgerows in western France. Agric Ecosyst Environ 94:59–72

    Article  Google Scholar 

  • Mommertz S, Schauer C, Köster N, Lang A, Filser J (1996) A comparison of D-Vac suction, fenced and unfenced pitfall trap sampling of epigeal arthropods in agro-ecosystems. Ann Zool Fennici 33:117–124

    Google Scholar 

  • Morris MG, Rispin WE (1988) A beetle fauna of oolitic limestone grassland, and the responses of species to conservation management by different cutting régimes. Biol Conserv 43:87–105

    Article  Google Scholar 

  • Naeem S, Wright JP (2003) Disentangling biodiversity effects on ecosystem functioning: deriving solutions to a seemingly insurmountable problem. Eco Lett 6:567–579

    Article  Google Scholar 

  • Nichols E, Spector S, Louzada J, Larsen T, Amezquita S, Favila ME (2008) Ecological functions and ecosystem services provided by Scarabaeinae Dung Beetles. Biol Conserv 141:1461–1474

    Article  Google Scholar 

  • Oksanen J, Guillaume Blanchet F, Kindt R, Legendre P, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Wagner H (2012) Vegan: community ecology package. R package version 2.0–5. http://vegan.r-forge.r-project.org. Accessed Sept 2012

  • Pinheiro JC, Bates DM (2000) Mixed-effects models in S and S-PLUS. Springer Verlag, New York

    Book  Google Scholar 

  • Pinheiro J, Bates D, DebRoy S, Sarkar D, R Core Team (2013) nlme: Linear and nonlinear mixed effects models. R package version 3.1–108. http://cran.r-project.org/web/packages/nlme/index.html. Accessed Jan 2013

  • Powell JA (2009) Coleoptera. In: Resh VH, Cardé RT (eds) Encyclopedia of insects. Academic Press, Waltham, p 1132

    Google Scholar 

  • Purnama Hidayat S, Manuwoto S, Noerdjito WA, Tscharntke T, Schulze CH (2010) Diversity and body size of dung beetles attracted to different dung types along a tropical land use gradient in Sulawesi, Indonesia. J Trop Ecol 26:53–65

    Article  Google Scholar 

  • Purtauf T, Dauber J, Wolters V (2005a) The response of carabids to landscape simplification is different for different trophic groups. Oecologia 142:458–464

    Article  PubMed  Google Scholar 

  • Purtauf T, Roschewitz I, Dauber J, Thies C, Tscharntke T, Wolters V (2005b) Landscape context of organic and conventional farms: influences on carabid beetle diversity. Agric Ecosyst Environ 108:165–174

    Article  Google Scholar 

  • R Core Team (2012) R: a language and environment for statistical Computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Rand TA, Tylianakis JM, Tscharntke T (2006) Spillover edge effects: the dispersal of agriculturally subsidized insect natural enemies into adjacent natural habitats. Eco Lett 9:603–614

    Article  Google Scholar 

  • Ricci C (1986) Food strategy of Tytthaspis sedecimpunctata in different habitats. In: Hodek I (ed) Ecology of aphidophaga. Academia Press, Prague, pp 119–123

    Google Scholar 

  • Ricklefs RE (1987) Community diversity: relative roles of local and regional processes. Science 235:167–171

    Article  CAS  PubMed  Google Scholar 

  • Sanders D, Entling MH (2011) Large variation of suction sampling efficiency depending on arthropod groups, species traits, and habitat properties. Entomol Exp Appl 138:234–243

    Article  Google Scholar 

  • Sanderson M, Byers R, Skinner R, Elwinger G (2003) Growth and complexity of white clover stolons in response to biotic and abiotic stress. Crop Sci 43:2197–2205

    Article  Google Scholar 

  • Shapiro JT, Báldi A (2012) Lost locations and the (ir)repeatability of ecological studies. Front Ecol Environ 10:235–236

    Article  Google Scholar 

  • Slade EM, Mann DJ, Villanueva JF, Lewis OT (2007) Experimental evidence for the effects of dung beetle functional group richness and composition on ecosystem function in a tropical forest. J Anim Ecol 76:1094–1104

    Article  PubMed  Google Scholar 

  • Sutherland AM, Parrella MP (2009) Mycophagy in Coccinellidae: review and synthesis. Biol Control 51:284–293

    Article  Google Scholar 

  • Symondson W, Sunderland K, Greenstone M (2002) Can generalist predators be effective biocontrol agents? Annu Rev Entomol 47:561–594

    Article  CAS  PubMed  Google Scholar 

  • Theiling KM, Croft B (1988) Pesticide side-effects on arthropod natural enemies: a database summary. Agric Ecosyst Environ 21:191–218

    Article  CAS  Google Scholar 

  • Tscharntke T, Kruess A (1999) Habitat fragmentation and biological control. In: Hawkins B, Cornell H (eds) Theoretical approaches to biological control. Cambridge University Press, Cambridge, pp 190–205

    Chapter  Google Scholar 

  • Tscharntke T, Klein AM, Kruess A, Steffan-Dewenter I, Thies C (2005) Landscape perspectives on agricultural intensification and biodiversity-ecosystem service management. Eco Lett 8:857–874

    Article  Google Scholar 

  • Tscharntke T, Clough Y, Wanger TC, Jackson L, Motzke I, Perfecto I, Vandermeer J, Whitbread A (2012a) Global food security, biodiversity conservation and the future of agricultural intensification. Biol Conserv 151:53–59

    Article  Google Scholar 

  • Tscharntke T, Tylianakis JM, Rand TA, Didham RK, Fahrig L, Batáry P, Bengtsson J, Clough Y, Crist TO, Dormann CF, Ewers RM, Fründ J, Holt RD, Holzschuh A, Klein AM, Kleijn D, Kremen C, Landis DA, Laurance W, Lindenmayer D, Scherber C, Sodhi N, Steffan-Dewenter I, Thies C, van der Putten WH, Westphal C (2012b) Landscape moderation of biodiversity patterns and processes—eight hypotheses. Biol Rev 87:661–685

    Article  PubMed  Google Scholar 

  • Venables WN, Ripley BD (2002) Modern applied statistics with S, 4th edn. Springer, New York

    Book  Google Scholar 

  • Weiher E, Keddy PA (1995) Assembly rules, null models, and trait dispersion: new questions from old patterns. Oikos 74:159–164

    Article  Google Scholar 

  • Werling BP, Gratton C (2008) Influence of field margins and landscape context on ground beetle diversity in Wisconsin, USA. Potato fields. Agric Ecosyst Environ 128:104–108

    Article  Google Scholar 

  • Wilson JD, Morris AJ, Arroyo BE, Clark SC, Bradbury RB (1999) A review of the abundance and diversity of invertebrate and plant foods of granivorous birds in northern Europe in relation to agricultural change. Agric Ecosyst Environ 75:13–30

    Article  Google Scholar 

  • Woltz MJ, Isaacs R, Landis DA (2012) Landscape structure and habitat management differentially influence insect natural enemies in an agricultural landscape. Agric Ecosyst Environ 152:40–49

    Article  Google Scholar 

  • Zuur AF, Ieno EN, Walker NJ, Saveliev AA, Smith GM (2009) Mixed effects models and extensions in ecology with R. Springer, New York, pp 386–387

    Book  Google Scholar 

Download references

Acknowledgments

We thank the managers of the three exploratories, Swen Renner, Sonja Gockel, Kerstin Wiesner, and Martin Gorke for their work in maintaining the plot and project infrastructure; Simone Pfeiffer and Christiane Fischer giving support through the central office, Michael Owonibi for managing the central data base, and Markus Fischer, Eduard Linsenmair, Dominik Hessenmöller, Jens Nieschulze, Daniel Prati, Ingo Schöning, François Buscot, Ernst-Detlef Schulze, Wolfgang W. Weisser and the late Elisabeth Kalko for their role in setting up the Biodiversity Exploratories project. We are very grateful to Boris Büche for his great help with the identification of beetles and classification of feeding types. We thank Michaela Bellach for her valuable contribution to the land use data. The work has been partly funded by the DFG Priority Program 1374 “Infrastructure-Biodiversity-Exploratories” (DFG- Ts45/28-1.). Field work permits were issued by the responsible state environmental offices of Baden-Württemberg, Thüringen, and Brandenburg (according to § 72 BbgNatSchG). Y. L. was supported by China Scholarship Council, P. B. was supported the German Research Foundation (DFG BA 4438/1-1) and C. W. was supported by the German Federal Ministry of Education and Research (DLR 01LL0917D). We also would like to thank two anonymous reviewers for their valuable suggestions and comments, which were of great help in improving the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunhui Liu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10980_2014_9987_MOESM1_ESM.tiff

Appendix 1 Site biplots of partial RDA ordinations for feeding types with region as a constraints variable, and landscape diversity and land use intensity as conditioned variables (TIFF 195 kb)

Appendix S1 Sampling plots in the study regions reported as a KML (Keyhole Markup Language) file (DOC 269 kb)

Supplementary Material 3 (KMZ 3 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Y., Rothenwöhrer, C., Scherber, C. et al. Functional beetle diversity in managed grasslands: effects of region, landscape context and land use intensity. Landscape Ecol 29, 529–540 (2014). https://doi.org/10.1007/s10980-014-9987-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10980-014-9987-0

Keywords

Navigation