Landscape Ecology

, Volume 30, Issue 4, pp 625–635 | Cite as

Changes in butterfly movements along a gradient of land use in farmlands of Transylvania (Romania)

  • Jacqueline LoosEmail author
  • Mikko Kuussaari
  • Johan Ekroos
  • Jan Hanspach
  • Pascal Fust
  • Laurie Jackson
  • Joern Fischer
Research Article



Agricultural transformation and increased land use intensity often lead to simplified landscapes and biodiversity loss. For animals, one possible mechanism underpinning biodiversity loss in agricultural landscapes is the disruption of movements. The disruption of movements may explain, for example, why butterfly communities in agricultural landscapes are often dominated by generalist species with high mobility.


Here, we investigated how the movement patterns of butterflies characterised by different levels of mobility changed along a gradient of agricultural land use intensity.


To this end, we studied 15 landscapes in low-intensity farmland in Central Romania, measuring 10 ha each and covering a gradient of landscape heterogeneity and woody vegetation cover. In these landscapes, we tracked movements of 563 individuals of nine butterfly species.


Our findings showed that overall movement activities differed significantly between species, corresponding well with expert-derived estimates of species-specific mobility. Interestingly, species of low and high mobility responded in opposite ways to increasing levels of landscape heterogeneity. In relatively simple landscapes, the movement patterns of low and high mobility species were similar. By contrast, in complex landscapes, the flight paths of low-mobility species became shorter and more erratic, whereas the flight paths of high-mobility species became longer and straighter. An analysis of the land covers traversed showed that most species avoided arable land but favoured the more heterogeneous parts of a given landscape.


In combination, our results suggest that non-arable patches in agricultural landscapes are important for butterfly movements, especially for low-mobility species.


Dispersal Eastern Europe Ecological flows Farmland biodiversity Individual tracking Intensification Landscape functional grain Landscape heterogeneity Mobility Land use change 



This study was funded through a Sofja Kovalevskaja Award by the Alexander von Humboldt Foundation and the German Ministry for Research and Education to JF. JE was supported by the strategic research environment BECC (Biodiversity and Ecosystem services in a Changing Climate). We thank A. Krieg, P. Kirkland, G. Paulus, L. M. Ernst, O. Höppner, M. Röllig, L. Sutcliffe, A. Nagel and K. Kacinsky for help in the field, all experts participating in the questionnaire and all land owners allowing access to their fields. We are grateful for valuable discussions with J. Settele, H. G. Smith, O. Olsson and A. Körösi. Three anonymous reviewers provided thoughtful and detailed suggestions that helped to improve an earlier version of the manuscript.

Supplementary material

10980_2014_141_MOESM1_ESM.png (25 kb)
Supplementary material 1 (PNG 25 kb)
10980_2014_141_MOESM2_ESM.png (4 kb)
Supplementary material 2 (PNG 4 kb)
10980_2014_141_MOESM3_ESM.png (30 kb)
Supplementary material 3 (PNG 30 kb)
10980_2014_141_MOESM4_ESM.docx (22 kb)
Supplementary material 4 (DOCX 22 kb)
10980_2014_141_MOESM5_ESM.docx (12 kb)
Supplementary material 5 (DOCX 12 kb)


  1. Akeroyd JR, Page JN (2006) The Saxon villages of southern Transylvania: conserving biodiversity in a historic landscape. In: Gafta D, Akeroyd JR (eds) Nature conservation: concepts and practice. Springer, Heidelberg, pp 199–210CrossRefGoogle Scholar
  2. Baguette M, Van Dyck H (2007) Landscape connectivity and animal behavior: functional grain as a key determinant for dispersal. Landscape Ecol 22(8):1117–1129CrossRefGoogle Scholar
  3. Baguette M, Blanchet S, Legrand D, Stevens VM, Turlure C (2013) Individual dispersal, landscape connectivity and ecological networks. Biol Rev Camb Philos Soc 88(2):310–326CrossRefPubMedGoogle Scholar
  4. Bennett AF, Radford JQ, Haslem A (2006) Properties of land mosaics: implications for nature conservation in agricultural environments. Biol Conserv 133(2):250–264CrossRefGoogle Scholar
  5. Benton TG, Vickery JA, Wilson JD (2003) Farmland biodiversity: is habitat heterogeneity the key? Trends Ecol Evol 18(4):182–188CrossRefGoogle Scholar
  6. Bergerot B, Tournant P, Moussus JP, Stevens VM, Julliard R, Baguette M, Foltête JC (2012) Coupling inter-patch movement models and landscape graph to assess functional connectivity. Popul Ecol 55(1):193–203CrossRefGoogle Scholar
  7. Bink FA (1992) Ecologische Atlas van de Dagvlinders van Noordwest-Europa. Schuyt & Co, HaarlemGoogle Scholar
  8. Börschig C, Klein A-M, von Wehrden H, Krauss J (2013) Traits of butterfly communities change from specialist to generalist characteristics with increasing land-use intensity. Basic Appl Ecol 14(7):547–554CrossRefGoogle Scholar
  9. Bowne DR, Bowers MA (2004) Interpatch movements in spatially structured populations: a literature review. Landscape Ecol 19(1):1–20CrossRefGoogle Scholar
  10. Conradt L, Roper TJ (2006) Nonrandom movement behavior at habitat boundaries in two butterfly species: implications for dispersal. Ecology 87(1):125–132CrossRefPubMedGoogle Scholar
  11. Core Team R (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  12. Delattre T, Vernon P, Burel F (2013) An agri-environmental scheme enhances butterfly dispersal in European agricultural landscapes. Agric Ecosyst Environ 166(2013):102–109CrossRefGoogle Scholar
  13. Dennis RLH, Dapporto L, Dover JW, Shreeve TG (2013) Corridors and barriers in biodiversity conservation: a novel resource-based habitat perspective for butterflies. Biodivers Conserv 22(12):1–26Google Scholar
  14. Dormann CF, Schweiger O, Augenstein I, Bailey D, Billeter R, De Blust G, DeFilippi R, Frenzel M, Hendrickx F, Herzog F, Klotz S, Liira J, Maelfait J-P, Schmidt T, Speelmans M, Van Wingerden WKRE, Zobel M (2007) Effects of landscape structure and land-use intensity on similarity of plant and animal communities. Glob Ecol Biogeogr 16(6):774–787Google Scholar
  15. Dover J, Settele J (2009) The influences of landscape structure on butterfly distribution and movement: a review. J Insect Conserv 13(1):3–27CrossRefGoogle Scholar
  16. Driscoll DA, Banks SC, Barton PS, Ikin K, Lentini P, Lindenmayer DB, Smith AL, Berry LE, Burns EL, Edworthy A, Evans MJ, Gibson R, Heinsohn R, Howland B, Kay G, Munro N, Scheele BC, Stirnemann I, Stojanovic D, Sweaney N, Villaseñor NR, Westgate MJ (2014) The trajectory of dispersal research in conservation biology: systematic review. PLoS ONE 9(4):e95053Google Scholar
  17. Dunning JB, Danielson BJ, Pulliam HR (1992) Ecological processes that affect populations in complex landscapes. Oikos 65(1):169–175CrossRefGoogle Scholar
  18. Duplouy A, Ikonen S, Hanski I (2013) Life history of the Glanville fritillary butterfly in fragmented versus continuous landscapes. Ecol Evol 3(16):5141–5156CrossRefPubMedCentralPubMedGoogle Scholar
  19. Ekroos J, Heliola J, Kuussaari M (2010) Homogenization of lepidopteran communities in intensively cultivated agricultural landscapes. J Appl Ecol 47(2):459–467CrossRefGoogle Scholar
  20. Erhardt A (1985) Diurnal Lepidoptera—sensitive indicators of cultivated and abandoned grassland. J Appl Ecol 22(3):849–861CrossRefGoogle Scholar
  21. Fahrig L, Baudry J, Brotons L, Burel FG, Crist TO, Fuller RJ, Sirami C, Siriwardena GM, Martin JL (2011) Functional landscape heterogeneity and animal biodiversity in agricultural landscapes. Ecol Lett 14(2):101–112CrossRefPubMedGoogle Scholar
  22. Fischer J, Hartel T, Kuemmerle T (2012) Conservation policy in traditional farming landscapes. Conserv Lett 5(3):167–175CrossRefGoogle Scholar
  23. Foley JA, DeFries R, Asner GP, Barford C, Bonan G, Carpenter SR, Stuart Chapin F, Coe MT, Daily GC, Gibbs HK, Helkowski JH, Holloway T, Howard EA, Kucharik CJ, Monfreda C, Patz JA, Colin Prentice I, Ramankutty N, Snyder PK (2005) Global consequences of land use. Science 309(5734):570–574Google Scholar
  24. Hanspach J, Hartel T, Milcu AI, Mikulcak F, Dorresteijn I, Loos J, von Wehrden H, Kuemmerle T, Abson D, Kovács-Hostyánszki A, Báldi A, Fischer J (2014) A holistic approach to studying social-ecological systems and its application to southern Transylvania. Ecol Soc 19(4):32Google Scholar
  25. Hovestadt T, Nieminen M (2009) Costs and benefits of dispersal in butterflies. In: Settele J, Shreeve T, Konvicka M, van Dyck HV (eds) Ecology of butterflies in Europe. Cambridge University Press, Cambridge, pp 97–106Google Scholar
  26. Kallioniemi E, Zannese A, Tinker JE, Franco AMA (2014) Inter- and intra-specific differences in butterfly behaviour at boundaries. Insect Conserv Diver 7(3):232–240CrossRefGoogle Scholar
  27. Komonen A, Grapputo A, Kaitala V, Kotiaho JS, Paivinen J (2004) The role of niche breadth, resource availability and range position on the life history of butterflies. Oikos 105(1):41–54CrossRefGoogle Scholar
  28. Kuefler D, Hudgens B, Haddad NM, Morris WF, Thurgate N (2010) The conflicting role of matrix habitats as conduits and barriers for dispersal. Ecology 91(4):944–950CrossRefPubMedGoogle Scholar
  29. Kuussaari M, Saarinen M, Korpela EL, Pöyry J, Hyvönen T (2014) Higher mobility of butterflies than moths connected to habitat suitability and body size in a release experiment. Ecol Evol 4:3800–3811CrossRefPubMedCentralPubMedGoogle Scholar
  30. Lindenmayer DB, Fischer J (2006) Habitat fragmentation and landscape change: an ecological and conservation synthesis. Island Press, Washington, DCGoogle Scholar
  31. Loos J, Dorresteijn I, Fust P, Hanspach J, Rakosy L, Fischer J (2014a) Extensive agricultural landscapes in Transylvania support high butterfly diversity. Implications for conservation. PLoS One 9(7):e103256CrossRefPubMedCentralPubMedGoogle Scholar
  32. Loos J, Hanspach J, Von Wehrden H, Beldean M, Moga CI, Fischer J (2014b) Developing robust field survey protocols in landscape ecology: a case study on birds, plants and butterflies. Biodivers Conserv. doi: 10.1007/s10531-014-0786-3 Google Scholar
  33. McGarigal K, Cushman S, Ene E (2012) FRAGSTATS v4: spatial pattern analysis program for categorical and continuous maps. University of Massachusetts, AmherstGoogle Scholar
  34. Mennechez G, Schtickzelle N, Baguette M (2003) Metapopulation dynamics of the bog fritillary butterfly: comparison of demographic parameters and dispersal between a continuous and a highly fragmented landscape. Landscape Ecol 18(3):279–291CrossRefGoogle Scholar
  35. Merckx T, Van Dyck H, Karlsson B, Leimar O (2003) The evolution of movements and behaviour at boundaries in different landscapes: a common arena experiment with butterflies. Proc R Soc Lond B 270(1526):1815–1821CrossRefGoogle Scholar
  36. Nathan R, Getz WM, Revilla E, Holyoak M, Kadmon R, Saltz D, Smouse PE (2008) A movement ecology paradigm for unifying organismal movement research. P Natl Acad Sci USA 105(49):19052–19059CrossRefGoogle Scholar
  37. Öckinger E, Franzen M, Rundlof M, Smith HG (2009) Mobility-dependent effects on species richness in fragmented landscapes. Basic Appl Ecol 10(6):573–578CrossRefGoogle Scholar
  38. Ouin A, Aviron S, Dover J, Burel F (2003) Complementation/supplementation of resources for butterflies in agricultural landscapes. Agric Ecosyst Environ 103(3):473–479CrossRefGoogle Scholar
  39. Pinheiro J, Bates D, DebRoy S, Sarkar D, R Core Team (2014) nlme: linear and nonlinear mixed effects models. R package version 3.1–117Google Scholar
  40. Ries L, Debinski DM (2001) Butterfly responses to habitat edges in the highly fragmented prairies of Central Iowa. J Anim Ecol 70(5):840–852CrossRefGoogle Scholar
  41. Schtickzelle N, Mennechez G, Baguette M (2006) Dispersal depression with habitat fragmentation in the bog fritillary butterfly. Ecology 87(4):1057–1065CrossRefPubMedGoogle Scholar
  42. Schultz CB, Franco AMA, Crone EE (2012) Response of butterflies to structural and resource boundaries. J Anim Ecol 81(3):724–734CrossRefPubMedGoogle Scholar
  43. Sekar S (2012) A meta-analysis of the traits affecting dispersal ability in butterflies: can wingspan be used as a proxy? J Anim Ecol 81(1):174–184CrossRefPubMedGoogle Scholar
  44. Stevens VM, Turlure C, Baguette M (2010) A meta-analysis of dispersal in butterflies. Biol Rev 85(3):625–642PubMedGoogle Scholar
  45. Stevens VM, Trochet A, Van Dyck H, Clobert J, Baguette M (2012) How is dispersal integrated in life histories: a quantitative analysis using butterflies. Ecol Lett 15(1):74–86CrossRefPubMedGoogle Scholar
  46. Stoate C, Baldi A, Beja P, Boatman ND, Herzon I, van Doorn A, de Snoo GR, Rakosy L, Ramwell C (2009) Ecological impacts of early 21st century agricultural change in Europe—a review. J Environ Manage 91(1):22–46CrossRefPubMedGoogle Scholar
  47. Taylor PD, Fahrig L, Henein K, Merriam G (1993) Connectivity is a vital element of landscape structure. Oikos 68(3):571–573CrossRefGoogle Scholar
  48. Tscharntke T, Tylianakis JM, Rand TA, Didham RK, Fahrig L, Batáry P, Bengtsson J, Clough Y, Crist TO, Dormann CF, Ewers RM, Fründ J, Holt RD, Holzschuh A, Klein AM, Kleijn D, Kremen C, Landis DA, Laurance W, Lindenmayer D, Scherber C, Sodhi N, Steffan-Dewenter I, Thies C, van der Putten WH, Westphal C (2012) Landscape moderation of biodiversity patterns and processes—eight hypotheses. Biol Rev 87(3):661–685Google Scholar
  49. Van Dyck H, Baguette M (2005) Dispersal behaviour in fragmented landscapes: routine or special movements? Basic Appl Ecol 6(6):535–545CrossRefGoogle Scholar
  50. Wang R, Ovaskainen O, Cao Y, Chen H, Zhou Y, Xu C, Hanski I (2011) Dispersal in the Glanville fritillary butterfly in fragmented versus continuous landscapes: comparison between three methods. Ecol Entomol 36(2):251–260CrossRefGoogle Scholar
  51. Warren MS, Bourn NAD (2011) Ten challenges for 2010 and beyond to conserve Lepidoptera in Europe. J Insect Conserv 15(1–2):321–326CrossRefGoogle Scholar
  52. Watt WB, Boggs CL (2003) Synthesis: butterflies as model systems in ecology and evolution—present and future. Butterflies—ecology and evolution taking flight. The University of Chicago Press, Chicago, pp 603–613Google Scholar
  53. Wickman P-O, Wiklund C (1983) Territorial defence and its seasonal decline in the speckled wood butterfly (Pararge aegeria). Anim Behav 31(4):1206–1216CrossRefGoogle Scholar
  54. Wright HL, Lake IR, Dolman PM (2012) Agriculture—a key element for conservation in the developing world. Conserv Lett 5(1):11–19CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Jacqueline Loos
    • 1
    • 3
    Email author
  • Mikko Kuussaari
    • 2
  • Johan Ekroos
    • 3
  • Jan Hanspach
    • 1
  • Pascal Fust
    • 4
  • Laurie Jackson
    • 5
  • Joern Fischer
    • 1
  1. 1.Faculty of Sustainability Science, Institute of EcologyLeuphana UniversityLueneburgGermany
  2. 2.Ecosystem Change Unit, Natural Environment CentreFinnish Environment Institute (SYKE)HelsinkiFinland
  3. 3.Centre for Environmental and Climate ResearchLund UniversityLundSweden
  4. 4.Organic Agricultural Science GroupUniversity KasselWitzenhausenGermany
  5. 5.Sussex Wildlife TrustWest SussexUK

Personalised recommendations