Landscape Ecology

, Volume 30, Issue 4, pp 609–623 | Cite as

Evaluating connectivity between Natura 2000 sites within the montado agroforestry system: a case study using landscape genetics of the wood mouse (Apodemus sylvaticus)

  • Jacinta MullinsEmail author
  • Fernando Ascensão
  • Luciana Simões
  • Leonardo Andrade
  • Margarida Santos-Reis
  • Carlos Fernandes
Research Article



The Natura 2000 network is the centerpiece of European nature conservation policy but its effectiveness is challenged by ongoing landscape change.


Our objective was to assess landscape connectivity between Natura 2000 sites in the biodiversity-rich western Mediterranean region.


We used the wood mouse as a focal species with short-range dispersal and obtained genetic data for 393 individuals uniformly distributed between two Natura 2000 sites in SW Portugal. We created a map of connectivity between the two sites that was based on a stack of analyses including reciprocal causal modeling and least-cost path modeling coupled with resistant kernel analysis.


Wood mice in the study area were genetically diverse and connected by gene flow over a large area. We did not find evidence of major population subdivision in the study area. Gene flow was limited by geographic distance, with significant genetic similarity between individuals within 3 km of each other. Vegetation cover and land use explained more of the variation in genetic distance than geographic distance alone. In particular, agroforestry areas and transitional woodland were associated with higher costs to movement than forest or arable land uses. This result may have been influenced by the difficulty in classifying land use in the open montado.


The Natura 2000 sites we studied are well connected by multiple corridors for dispersal. Our analysis also highlighted the importance of the Serra de Grândola, part of the European Long Term Ecological Research Network but not yet included in Natura 2000.


Population connectivity Landscape genetics Isolation-by-resistance Reciprocal causal modeling Small mammal UNICOR 



We thank the anonymous reviewers and Denise O’ Meara for their helpful comments on earlier drafts of this manuscript. Fabiana Marques and Ana Catarina Silva provided fieldwork support. This study was funded by the Portuguese Foundation for Science and Technology (FCT) projects PTDC/BIA-BEC/101511/2008 and LTER/BIA-BEC/0048/2009, and individual contracts C2007-UL-342-CBA1 (CF) and SFRH/BD/38053/2007 (FA). Fieldwork was carried out under license from the Portuguese Institute for Nature Conservation and Biodiversity (ICNB; Instituto da Conservação da Natureza e Biodiversidade).

Supplementary material

10980_2014_130_MOESM1_ESM.doc (880 kb)
Supplementary material 1 (DOC 879 kb)


  1. Adriaensen F, Chardon JP, de Blust G, Swinnen E, Villalba S, Gulinck H, Matthysen E (2003) The application of least-cost modelling as a functional landscape model. Landsc Urban Plan 64:233–247CrossRefGoogle Scholar
  2. Alagador D, Triviño M, Orestes Cerdeira J, Brás R, Cabeza M, Araújo MB (2012) Linking like with like: optimising connectivity between environmentally-similar habitats. Landscape Ecol 27:291–301CrossRefGoogle Scholar
  3. Allouche O, Tsoar A, Kadmon R (2006) Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). J Appl Ecol 43:1223–1232CrossRefGoogle Scholar
  4. Anderson EC, Dunham KK (2008) The influence of family groups on inferences made with the program structure. Mol Ecol Res 8:1219–1229CrossRefGoogle Scholar
  5. Araújo MB, Pearson RG, Thuiller W, Erhard M (2005) Validation of species-climate impact models under climate change. Glob Chang Biol 11:1504–1513CrossRefGoogle Scholar
  6. Araújo M, Alagador D, Cabeza M, Nogués-Bravo D, Thuiller W (2011) Climate change threatens European conservation areas. Ecol Lett 14:484–492CrossRefPubMedCentralPubMedGoogle Scholar
  7. Ascensão F, Clevenger AP, Grilo C, Filipe J, Santos-Reis M (2012) Highway verges as habitat providers for small mammals in agrosilvopastoral environments. Biodivers Conserv 21:3681–3697CrossRefGoogle Scholar
  8. Baguette M, Blanchet S, Legrand D, Stevens VM, Turlure C (2013) Individual dispersal, landscape connectivity and ecological networks. Biol Rev 88:310–326CrossRefPubMedGoogle Scholar
  9. Belkhir K, Borsa P, Chikhi L, Raufaste N, Bonhomme F (2004) GENETIX 4.05, logiciel sous Windows TM pour la génétique des populations. Lab Gén, Popul, Interact, CNRS UMR 5000:1996–2004Google Scholar
  10. Bennett AF, Saunders DA (2010) Habitat fragmentation and landscape change. In: Sodhi NS, Ehrlich PR (eds) Conservation biology for all. Oxford University Press, Oxford, pp 88–106Google Scholar
  11. Berckmoes V, Scheirs J, Jordaens K, Stevens VM, Turlure C (2005) Effects of environmental pollution on microsatellite DNA diversity in wood mouse (Apodemus sylvaticus) populations. Environ Toxicol Chem 24:2898–2907CrossRefPubMedGoogle Scholar
  12. Blair C, Weigel DE, Balazik M, Keeley ATH, Walker FM, Landguth E, Cushman SA, Murphy M, Waits L, Balkenhol N (2012) A simulation-based evaluation of methods for inferring barriers to gene flow. Mol Ecol Res 12:822–833CrossRefGoogle Scholar
  13. Blaum N, Wichmann MC (2007) Short-term transformation of matrix into hospitable habitat facilitates gene flow and mitigates fragmentation. J Anim Ecol 76:1116–1127CrossRefPubMedGoogle Scholar
  14. Blondel J (2006) The ‘design’ of Mediterranean landscapes: a millennial story of humans and ecological systems during the historic period. Hum Ecol 34:713–729CrossRefGoogle Scholar
  15. Bonnet E, van de Peer Y (2002) ZT: a software tool for simple and partial Mantel tests. J Stat Softw 7:1–12Google Scholar
  16. Booth W, Montgomery WI, Prodöhl PA (2009) Spatial genetic structuring in a vagile species, the European wood mouse. J Zool 279:219–228CrossRefGoogle Scholar
  17. Büttner G, Feranec J, Jaffrain G (2006) CORINE land cover nomenclature illustrated guide—addendum 2006. Instituto Geográfico PortuguêsGoogle Scholar
  18. Caetano M, Mata F, Freire S, Campagnolo M (2006) Accuracy assessment of the Portuguese CORINE Land Cover map. In: global developments in environmental earth observation from space. Proceedings of the 25th EARSeL Symposium, Porto, Portugal, 2005. Millpress, Rotterdam, pp 459–467Google Scholar
  19. Carlsson J (2008) Effects of microsatellite null alleles on assignment testing. J Hered 99:616–623CrossRefPubMedGoogle Scholar
  20. Chapuis MP, Estoup A (2007) Microsatellite null alleles and estimation of population differentiation. Mol Biol Evol 24:621–631CrossRefPubMedGoogle Scholar
  21. Compton BW, McGsarigal K, Cushman SA, Gamble LR (2007) A resistant-kernel model of connectivity for amphibians that breed in vernal pools. Conserv Biol 21:788–799CrossRefPubMedGoogle Scholar
  22. Costa A, Pereira H, Madeira M (2009) Landscape dynamics in endangered cork oak woodlands in Southwestern Portugal (1958–2005). Agrofor Syst 77:83–96CrossRefGoogle Scholar
  23. Costa A, Madeira M, Lima Santos J, Oliveira A (2011) Change and dynamics in Mediterranean evergreen oak woodlands landscapes of Southwestern Iberian Peninsula. Landsc Urban Plan 102:164–176CrossRefGoogle Scholar
  24. Costa A, Madeira M, Plieninger T (2014) Cork oak woodlands patchiness: a signature of imminent deforestation? Appl Geogr 54:18–26CrossRefGoogle Scholar
  25. Coulon A, Guillot G, Cosson JF, Angibault JMA, Aulagnier S, Cargnelutti B, Galan M, Hewison AJM (2006) Genetic structure is influenced by landscape features: empirical evidence from a roe deer population. Mol Ecol 15:1669–1679CrossRefPubMedGoogle Scholar
  26. Cox RL, Underwood EC (2011) The importance of conserving biodiversity outside of protected areas in Mediterranean ecosystems. PLoS ONE 6:e14508CrossRefPubMedCentralPubMedGoogle Scholar
  27. Cushman SA, McKelvey KS, Hayden J, Schwartz MK (2006) Gene flow in complex landscapes: testing multiple hypotheses with causal modeling. Am Nat 168:486–499CrossRefPubMedGoogle Scholar
  28. Cushman SA, Lewis JS, Landguth EL (2013a) Evaluating the intersection of a regional wildlife connectivity network with highways. Mov Ecol 1:12CrossRefPubMedCentralPubMedGoogle Scholar
  29. Cushman SA, Wasserman T, Landguth E, Shirk A (2013b) Re-Evaluating causal modeling with mantel tests in landscape genetics. Diversity 5:51–72CrossRefGoogle Scholar
  30. Cushman SA, Max T, Whitham T, Allan GJ (2014) River network connectivity and climate gradients drive genetic differentiation in a riparian foundation tree. Ecol Appl 24:1000–1014CrossRefPubMedGoogle Scholar
  31. Díaz M, Torre I, Peris A, Tena L (2005) Foraging behaviour of wood mice as related to presence and activity of genets. J Mammal 86:1178–1185CrossRefGoogle Scholar
  32. Earl DA, VonHoldt BM (2011) Structure harvester: a website and program for visualizing structure output and implementing the evanno method. Conserv Genet Res 4:359–361CrossRefGoogle Scholar
  33. EEA (2010) 10 messages for 2010 agricultural ecosystems. EEA, DenmarkGoogle Scholar
  34. Epperson BK (2005) Estimating dispersal from short distance spatial autocorrelation. Heredity 95:7–15CrossRefPubMedGoogle Scholar
  35. Feranec J, Jaffrain G, Soukup T, Hazeu G (2010) Determining changes and flows in European landscapes 1990–2000 using CORINE land cover data. Appl Geogr 30:19–35CrossRefGoogle Scholar
  36. Gaston KJ, Jackson SF, Cantú Salazar L, Cruz-Piñon G (2008) The ecological performance of protected areas. Annu Rev Ecol Evol S 39:93–113CrossRefGoogle Scholar
  37. Gauffre B, Estoup A, Bretagnolle V, Cosson JF (2008) Spatial genetic structure of a small rodent in a heterogeneous landscape. Mol Ecol 17:4619–4629CrossRefPubMedGoogle Scholar
  38. Gonçalves P, Alcobia S, Luciana S, Santos-Reis M (2012) Effects of management options on mammal richness in a Mediterranean agro-silvo-pastoral system. Agroforest Syst 85:383–395CrossRefGoogle Scholar
  39. Gortat T, Gryczyńska Siemiątkowska A, Rutkowski R, Kozakiewicz A, Mikoszewski A, Kozakiewicz M (2010) Landscape pattern and genetic structure of a yellow-necked mouse Apodemus flavicollis population in north-eastern Poland. Acta Theriol 55:109–121CrossRefGoogle Scholar
  40. Gortat T, Rutkowski R, Gryczyńska Siemiątkowska A, Kozakiewicz, Kozakiewicz M (2012) Genetic structure in urban and rural populations of Apodemus agrarius in Poland. Mammal Biol 78:171–177Google Scholar
  41. Goslee SC, Urban DL (2007) The ECODIST package for dissimilarity-based analysis of ecological data. J Stat Softw 22:1–19Google Scholar
  42. Graham MH (2003) Confronting multicollinearity in ecological multiple regression. Ecology 84:2809–2815CrossRefGoogle Scholar
  43. Grilo C, Bissonette JA, Santos-Reis M (2009) Spatial–temporal patterns in Mediterranean carnivore road casualties: consequences for mitigation. Biol Conserv 142:301–313CrossRefGoogle Scholar
  44. Gu X-D, Liu S-Y, Wang Y-Z, Wu H (2009) Development and characterization of eleven polymorphic microsatellite loci from South China field mouse (Apodemus draco). Conserv Genet 10:1961–1963CrossRefGoogle Scholar
  45. Guillot G, Estoup A, Mortier F, Cosson JF (2005) A spatial statistical model for landscape genetics. Genetics 170:1261–1280CrossRefPubMedCentralPubMedGoogle Scholar
  46. Hardy OJ, Vekemans X (2002) SPAGEDI: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Mol Ecol Notes 2:618–620CrossRefGoogle Scholar
  47. Harr B, Musolf K, Gerlach G (2000) Characterization and isolation of DNA microsatellite primers in wood mice (Apodemus sylvaticus, Rodentia). Mol Ecol Notes 9:1664–1665CrossRefGoogle Scholar
  48. Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978CrossRefGoogle Scholar
  49. Holzhauer SIJ, Ekschmitt K, Sander A, Dauber J, Wolters V (2006) Effect of historic landscape change on the genetic structure of the bush-cricket Metrioptera roeseli. Landsc Ecol 21:891–899CrossRefGoogle Scholar
  50. Hubisz MJ, Falush D, Stephens M, Pritchard JK (2009) Inferring weak population structure with the assistance of sample group information. Mol Ecol Res 9:1322–1332CrossRefGoogle Scholar
  51. Joffre R, Rambal S, Ratte JP (1999) The dehesa system of southern Spain and Portugal as a natural ecosystem mimic. Agroforest Syst 45:57–79CrossRefGoogle Scholar
  52. Jongman RHG, Bouwma IM, Griffioen A, Jones-Walters L, van Doorn AM (2011) The pan European ecological network: PEEN. Landsc Ecol 26:311–326CrossRefGoogle Scholar
  53. Jost L (2008) GST and its relatives do not measure differentiation. Mol Ecol 17:4015–4026CrossRefPubMedGoogle Scholar
  54. Kalinowski ST (2005) HP-RARE 1.0: a computer program for performing rarefaction on measures of allelic richness. Mol Ecol Notes 5:187–189CrossRefGoogle Scholar
  55. Kalinowski ST, Wagner AP, Taper ML (2006) ml-relate: a computer program for maximum likelihood estimation of relatedness and relationship. Mol Ecol Notes 6:576–579CrossRefGoogle Scholar
  56. Klaa K, Mill PJ, Incoll LD (2005) Distribution of small mammals in a silvoarable agroforestry system in Northern England. Agroforest Syst 63:101–110CrossRefGoogle Scholar
  57. Koen EL, Bowman J, Walpole AA (2012) The effect of cost surface parameterization on landscape resistance estimates. Mol Ecol Res 12:686–696CrossRefGoogle Scholar
  58. Landguth EL, Cushman SA, Schwartz MK, McKelvey KS, Murphy M, Luikart G (2010) Quantifying the lag time to detect barriers in landscape genetics. Mol Ecol 19:4179–4191Google Scholar
  59. Landguth EL, Hand BK, Glassy J, Cushman SA, Sawaya MA (2012) UNICOR: a species connectivity and corridor network simulator. Ecography 35:9–14CrossRefGoogle Scholar
  60. Maiorano L, Falcucci A, Garton EO, Boitani L (2007) Contribution of the Natura 2000 network to biodiversity conservation in Italy. Conserv Biol 21:1433–1444CrossRefPubMedGoogle Scholar
  61. Makova KD, Patton JC, Krysanov EY, Chesser RK, Baker RJ (1998) Microsatellite markers in wood mouse and striped field mouse (genus Apodemus). Mol Ecol 7:247–255CrossRefPubMedGoogle Scholar
  62. Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27:209–220PubMedGoogle Scholar
  63. McRae BH (2006) Isolation by Resistance. Evolution 60:1551–1561CrossRefPubMedGoogle Scholar
  64. McRae BH, Beier P (2007) Circuit theory predicts gene flow in plant and animal populations. PNAS 104:19885–19890CrossRefPubMedCentralPubMedGoogle Scholar
  65. Médail F, Quézel P (1999) Biodiversity hotspots in the Mediterranean basin: setting global conservation priorities. Conserv Biol 13:1510–1513CrossRefGoogle Scholar
  66. Meirmans PG, Hedrick PW (2011) Measuring differentiation: gst and related statistics. Mol Ecol Res 11:5–18CrossRefGoogle Scholar
  67. Meirmans PG, van Tienderen PH (2004) GENOTYPE and GENODIVE: two programs for the analysis of genetic diversity of asexual organisms. Mol Ecol Notes 4:792–794CrossRefGoogle Scholar
  68. Michaux JR, Magnanou E, Paradis E, Nieberding C, Libois R (2003) Mitochondrial phylogeography of the wood mouse (Apodemus sylvaticus) in the Western Palearctic region. Mol Ecol 12:685–697CrossRefPubMedGoogle Scholar
  69. Mossman CA, Waser PM (2001) Effects of habitat fragmentation on population genetic structure in the white-footed mouse (Peromyscus leucopus). Can J Zool 79:285–295CrossRefGoogle Scholar
  70. Mullins J, McDevitt AD, Kowalczyk R, Ruczyńska I, Górny M, Wójcik JM (2014) The influence of habitat structure on genetic differentiation in red fox populations in north-eastern Poland. Acta Theriol 59:367–376Google Scholar
  71. Munshi-South J, Kharchenko K (2010) Rapid, pervasive genetic differentiation of urban white-footed mouse (Peromyscus leucopus) populations in New York City. Mol Ecol 19:4242–4254Google Scholar
  72. Myers N, Mittermeier RA, Mittermeier CG, Da Fonseca GA, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858CrossRefPubMedGoogle Scholar
  73. Olea L, San Miguel-Ayanz A (2006) The Spanish dehesa. A traditional Mediterranean silvopastoral system linking production and nature conservation. Grassl Sci Eur 11:3–13Google Scholar
  74. Panzacchi M, Linnell JDC, Melis C, Odden M, Odden J, Gorini L, Andersen R (2010) Effect of land-use on small mammal abundance and diversity in a forest–farmland mosaic landscape in south-eastern Norway. For Ecol Manag 259:1536–1545CrossRefGoogle Scholar
  75. Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in excel. Population genetic software for teaching and research–an update. Bioinformatics 28:2537–2539CrossRefPubMedCentralPubMedGoogle Scholar
  76. Peakall R, Ruibal M, Lindenmayer DB (2003) Spatial autocorrelation analysis offers new insights into gene flow in the Australian bush rat, Rattus fuscipes. Evolution 57:1182–1195CrossRefPubMedGoogle Scholar
  77. Pereira PM, Pires da Fonseca M (2003) Nature vs nurture: the making of the montado ecosystem. Conservation Ecol 7:7Google Scholar
  78. Pinto Correia T (1993) Threatened landscape in Alentejo, Portugal: the ‘montado’and other ‘agro-silvo-pastoral’systems. Landsc Urban Plan 24:43–48CrossRefGoogle Scholar
  79. Pinto Correia T, Ribeiro N, Sá-Sousa P (2011) Introducing the montado, the cork and holm oak agroforestry system of Southern Portugal. Agroforest Syst 82:99–104CrossRefGoogle Scholar
  80. Pita R, Mira A, Beja P (2006) Conserving the cabrera vole, Microtus cabrerae, in intensively used Mediterranean landscapes. Agr Ecosyst Environ 115:1–5CrossRefGoogle Scholar
  81. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedCentralPubMedGoogle Scholar
  82. Quéméré E, Crouau-Roy B, Rabarivola C, Louis EE, Chikhi L (2010) Landscape genetics of an endangered lemur (Propithecus tattersalli) within its entire fragmented range. Mol Ecol 19:1606–1621CrossRefPubMedGoogle Scholar
  83. Quantum GIS Development Team (2012) Quantum GIS geographic information system. Open source geospatial foundation. Available at
  84. Rice WR (1989) Analyzing tables of statistical tests. Evolution 43:223–225CrossRefGoogle Scholar
  85. Rico A, Kindlmann P, Sedláček F (2009) Can the barrier effect of highways cause genetic subdivision in small mammals? Acta Theriol 54:297–310CrossRefGoogle Scholar
  86. Rosalino LM, do Rosário J, Santos-Reis M (2009) The role of habitat patches on mammalian diversity in cork oak agroforestry systems. Acta Oecol 35:507–512CrossRefGoogle Scholar
  87. Rosalino LM, Ferreira D, Leitâo I, Santos-Reis M (2011a) Selection of nest sites by wood mice Apodemus sylvaticus in a Mediterranean agro-forest landscape. Ecol Res 26:445–452CrossRefGoogle Scholar
  88. Rosalino LM, Ferreira D, Leitâo I, Santos-Reis M (2011b) Usage patterns of Mediterranean agro-forest habitat components by wood mice Apodemus sylvaticus. Mammalian Biol 76:268–273Google Scholar
  89. Rousset (2000) Genetic differentiation between individuals. J Evolut Biol 13:58–62CrossRefGoogle Scholar
  90. Rousset F (2008) GENEPOP’007: a complete re-implementation of the GENEPOP software for Windows and Linux. Mol Ecol Notes 8:103–106CrossRefGoogle Scholar
  91. Sabino-Marques H, Mira A (2010) Living on the verge: are roads a more suitable refuge for small mammals than streams in Mediterranean pastureland? Ecol Res 26:277–287CrossRefGoogle Scholar
  92. Santos SM, Simões MP, da Luz Mathias M, Mira A (2006) Vegetation analysis in colonies of an endangered rodent, the Cabrera vole (Microtus cabrerae), in southern Portugal. Ecol Res 21:197–207CrossRefGoogle Scholar
  93. Schlitter D, van der Straeten E, Amori G, Hutterer R, Kryštufek B, Yigit N, Mitsain G (2008) Apodemus sylvaticus. In: IUCN 2013. IUCN Red List of Threatened Species. Version 2013.2. <>. Downloaded on 23 April 2014
  94. Seutin G, White BN, Boag PT (1991) Preservation of avian blood and tissue samples for DNA analyses. Can J Zool 69:82–90CrossRefGoogle Scholar
  95. Shah VB, McRae BH (2008) Circuitscape: A tool for landscape ecology. In: Varoquaux G, Vaught T, Millman J (Eds) Proceedings of the 7th Python in Science conference (SciPy 2008), pp 62–66Google Scholar
  96. Shirk AJ, Wallin DO, Cushman SA, Rice CG, Warheit KI (2010) Inferring landscape effects on gene flow: a new model selection framework. Mol Ecol 19:3603–3619CrossRefPubMedGoogle Scholar
  97. Silva PM, Aguiar CAS, Niemelä J, Sousa JP, Serrano ARM (2009) Cork-oak woodlands as key-habitats for biodiversity conservation in Mediterranean landscapes: a case study using rove and ground beetles (Coleoptera: Staphylinidae, Carabidae). Biodivers Conserv 18:605–619CrossRefGoogle Scholar
  98. Smouse PE, Peakall R (1999) Spatial autocorrelation analysis of individual multiallele and multilocus genetic structure. Heredity 82:561–573CrossRefPubMedGoogle Scholar
  99. Smouse PE, Peakall R, Gonzales E (2008) A heterogeneity test for fine-scale genetic structure. Mol Ecol 17:3389–3400CrossRefPubMedGoogle Scholar
  100. Spear SF, Storfer A (2008) Landscape genetic structure of coastal tailed frogs (Ascaphus truei) in protected vs. managed forests. Mol Ecol 17:4642–4656CrossRefPubMedGoogle Scholar
  101. Spear SF, Balkenhol N, Scribner KIM (2010) Use of resistance surfaces for landscape genetic studies: considerations for parameterization and analysis. Mol Ecol 3576–3591Google Scholar
  102. Taylor PD, Fahrig L, Henein K, Merriam G (1993) Landscape connectivity is a vital element of landscape structure. Oikos 68:571–573CrossRefGoogle Scholar
  103. Thuiller W, Lafourcade B, Engler R, Araújo MB (2009) BIOMOD—a platform for ensemble forecasting of species distributions. Ecography 32:369–373CrossRefGoogle Scholar
  104. Thuiller W, Georges D, Engler R (2014) biomod2: Ensemble platform for species distribution modeling. R package version 3-1.48 URL:
  105. Tsiafouli MA, Apostolopoulou E, Mazaris AD, Kallimanis AS, Drakou EG, Pantis JD (2013) Human activities in Natura 2000 sites: a highly diversified conservation NETWORK. Environ Manage 51:1025–1033CrossRefPubMedGoogle Scholar
  106. van Doorn AM, Pinto Correia T (2007) Differences in land cover interpretation in landscapes rich in cover gradients: reflections based on the montado of South Portugal. Agroforest Syst 70:169–183CrossRefGoogle Scholar
  107. Vos CC, Berry P, Opdam P, Baveco H, Nijhof B, O’Hanley J, Bell C, Kuipers H (2008) Adapting landscapes to climate change: examples of climate-proof ecosystem networks and priority adaptation zones. J Appl Ecol 45:1722–1731CrossRefGoogle Scholar
  108. Wasserman TN, Cushman SA, Schwartz MK, Wallin DO (2010) Spatial scaling and multi-model inference in landscape genetics: Martes americana in northern Idaho. Landscape Ecol 25:1601–1612CrossRefGoogle Scholar
  109. Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370CrossRefGoogle Scholar
  110. Wright S (1943) Isolation by distance. Genetics 28:114PubMedCentralPubMedGoogle Scholar
  111. Wu H, Zhan XJ, Yan L, Liu SY, Li M, Hu JC, Wei FW (2008) Isolation and characterization of fourteen microsatellite loci for striped field mouse (Apodemus agrarius). Conserv Genet 9:1691–1693CrossRefGoogle Scholar
  112. Zeller KA, McGarigal K, Whiteley AR (2012) Estimating landscape resistance to movement: a review. Landscape Ecol 27:777–797CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Jacinta Mullins
    • 1
    Email author
  • Fernando Ascensão
    • 1
  • Luciana Simões
    • 1
  • Leonardo Andrade
    • 1
  • Margarida Santos-Reis
    • 1
  • Carlos Fernandes
    • 1
  1. 1.Centre for Ecology, Evolution and Environmental ChangesFaculdade de Ciências, Universidade de LisboaLisbonPortugal

Personalised recommendations