Skip to main content

Advertisement

Log in

Flowering phenology and nesting resources influence pollinator community composition in a fragmented ecosystem

  • Research Article
  • Published:
Landscape Ecology Aims and scope Submit manuscript

Abstract

Introduction

Habitat loss is the leading cause of extinctions on the planet. However, negative effects of habitat loss and fragmentation on biodiversity can be reduced if resources in urban or semi-natural areas in the surrounding matrix can be used by wildlife.

Methods

We investigated the influence of floral and nesting resources in urban- and forest-associated oak-savannah fragments, surrounding urban and forest matrix, and urban areas spatially independent from oak-savannah habitat on pollinator community composition in a fragmented oak-savannah ecosystem.

Results

Both independent urban and urban matrix sites supported high abundance and richness of plants and pollinators relative to other fragment categories, especially towards the end of the season when plants and pollinators in oak-savannah fragments were scarce. A species of particular conservation concern in our region, Bombus occidentalis, was supported by late-flowering resources in our urban sites. Forest-associated oak-savannah fragments were missing late-season species while urban-associated fragments supported high abundance and richness of mid- to late-season pollinators, likely due to supplemental use of floral resources in the urban matrix. Female cavity-nesting and ground-nesting bees were not restricted by the availability of natural nesting resources we expected them to require (e.g. small cavities, bare soil).

Conclusion

These results provide important information on native pollinators in a highly fragmented habitat, and suggest that we should consider matrix quality in conservation planning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Cameron SA, Lozier JD, Strange JP, Koch JB, Cordes N, Solter LF, Griswold TL (2011) Patterns of widespread decline in North American bumble bees. Proc Natl Acad Sci USA 108:662–667

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cane JH, Minckley RL, Kervin LJ, Roulston TH, Williams NM (2006) Complex responses within a desert bee guild (Hymenoptera : Apiformes) to urban habitat fragmentation. Ecol Appl 16:632–644

    Article  PubMed  Google Scholar 

  • Davies KF, Margules CR, Lawrence JF (2000) Which traits of species predict population declines in experimental forest fragments? Ecology 81:1450–1461

    Article  Google Scholar 

  • Dufrêne M, Legendre P (1997) Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecol Monogr 67:345–366

    Google Scholar 

  • Dunning JB, Danielson BJ, Pulliam HR (1992) Ecological processes that affect populations in complex landscapes. Oikos 65:169–175

    Article  Google Scholar 

  • Ellis EC, Goldewijk KK, Siebert S, Lightman D, Ramankutty N (2010) Anthropogenic transformation of the biomes, 1700 to 2000. Global Ecol Biogeogr 19:589–606

    Google Scholar 

  • Eltz T, Brühl CA, van der Kaars S, Linsenmair KE (2002) Determinants of stingless bee nest density in lowland dipterocarp forests of Sabah, Malaysia. Oecologia 131:27–34

    Article  Google Scholar 

  • Fahrig L (2001) How much habitat is enough? Biol Conserv 100:65–74

    Article  Google Scholar 

  • Franklin JF, Lindenmayer DB (2009) Importance of matrix habitats in maintaining biological diversity. Proc Natl Acad Sci USA 106:349–350

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gascon C, Lovejoy TE, Bierregaard Jr. RO, Malcolm JR, Stouffer PC, Vasconcelos HL, Laurance WF, Zimmerman B, Tocher M, Borges S (1999) Matrix habitat and species richness in tropical forest remnants. Biol Conserv 91:223–229

  • Greenleaf SS, Williams NM, Winfree R, Kremen C (2007) Bee foraging ranges and their relationship to body size. Oecologia 153:589–596

    Article  PubMed  Google Scholar 

  • Henle K, Davies KF, Kleyer M, Margules C, Settele J (2004) Predictors of species sensitivity to fragmentation. Biodivers Conserv 13:207–251

    Article  Google Scholar 

  • Hinners SJ, Kearns CA, Wessman CA (2012) Roles of scale, matrix, and native habitat in supporting a diverse suburban pollinator assemblage. Ecol Appl 22:1923–1935

    Article  PubMed  Google Scholar 

  • Hobbs GA (1966) Ecology of species of Bombus Latr. (Hymenoptera: Apidae) in southern Alberta. IV. Subgenus Fervidobombus Skorikov. Can Entomol 98:33–39

    Article  Google Scholar 

  • Hobbs GA (1967) Ecology of species of Bombus (Hymenoptera: Apidae) in southern Alberta VI. Subgenus Pyrobombus. Can Entomol 99:1271–1292

    Article  Google Scholar 

  • Holzschuh A, Steffan-Dewenter I, Tscharntke T (2008) Agricultural landscapes with organic crops support higher pollinator diversity. Oikos 117:354–361

    Article  Google Scholar 

  • Jauker F, Diekötter T, Schwarzbach F, Wolters V (2009) Pollinator dispersal in an agricultural matrix: opposing responses of wild bees and hoverflies to landscape structure and distance from main habitat. Landscape Ecol 24:547–555

    Article  Google Scholar 

  • Jha S, Kremen C (2013) Resource diversity and landscape-level homogeneity drive native bee foraging. Proc Natl Acad Sci USA 110:555–558

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kennedy C, Marra P, Fagan W, Neel M (2010) Landscape matrix and species traits mediate responses of Neotropical resident birds to forest fragmentation in Jamaica. Ecol Monogr 80:651–669

    Article  Google Scholar 

  • Klein A-M, Vaissière BE, Cane JH, Steffan-Dewenter I, Cunningham SA, Kremen C, Tscharntke T (2007) Importance of pollinators in changing landscapes for world crops. Proc R Soc Lond B 274:303–313

    Article  Google Scholar 

  • Laurance W (2008) Theory meets reality: how habitat fragmentation research has transcended island biogeographic theory. Biol Conserv 141:1731–1744

    Article  Google Scholar 

  • Legendre P, Legendre L (1998) Numerical ecology, 2nd edn. Elsevier Science B. V, Amsterdam

    Google Scholar 

  • Mandelik Y, Winfree R, Neeson T, Kremen C (2012) Complementary habitat use by wild bees in agro-natural landscapes. Ecol Appl 22:1535–1546

    Article  PubMed  Google Scholar 

  • McCune B, Grace JB (2002) Analysis of ecological communities. MjM Software Design, Gleneden Beach

    Google Scholar 

  • McCune B, Mefford MJ (2005) PC-ORD, multivariate analysis of ecological data, Version 5 for windows edition. MjM Software Design, Gleneden Beach

    Google Scholar 

  • McFrederick QS, LeBuhn G (2006) Are urban parks refuges for bumble bees Bombus spp. (Hymenoptera: Apidae)? Biol Conserv 129:372–382

    Article  Google Scholar 

  • McKinney ML (2002) Urbanization, biodiversity, and conservation. Bioscience 52:883–890

    Article  Google Scholar 

  • Michener CD (2000) The bees of the world. John Hopkins Press, Baltimore

    Google Scholar 

  • Neame LA, Griswold T, Elle E (2013) Pollinator nesting guilds respond differently to urban habitat fragmentation in an oak-savannah ecosystem. Insect Conserv Diver 6:57–66

    Article  Google Scholar 

  • Newton I (1994) The role of nest sites in limiting the numbers of hole-nesting birds: a review. Biol Conserv 70:265–276

    Article  Google Scholar 

  • Oksanen AJ, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Henry MHH, Wagner H (2013) vegan: community ecology package. R package version 2.0-7. http://CRAN.R-project.org/package=vegan. Accessed 10 June 2013

  • Osborne JL, Martin AP, Shortall CR, Todd AD, Goulson D, Knight ME, Hale RJ, Sanderson RA (2008) Quantifying and comparing bumblebee nest densities in gardens and countryside habitats. J Appl Ecol 45:784–792

    Article  Google Scholar 

  • Potts SG, Willmer P (1997) Abiotic and biotic factors influencing nest-site selection by Halictus rubicundus, a ground-nesting halictine bee. Ecol Entomol 22:319–328

    Article  Google Scholar 

  • Potts SG, Vulliamy B, Dafni A, Ne’eman G, Willmer P (2003) Linking bees and flowers: How do floral communities structure pollinator communities? Ecology 84:2628–2642

    Article  Google Scholar 

  • Potts SG, Vulliamy B, Roberts S, O’Toole C, Dafni A, Ne’eman G, Willmer P (2005) Role of nesting resources in organising diverse bee communities in a Mediterranean landscape. Ecol Entomol 30:78–85

    Article  Google Scholar 

  • Potts SG, Biesmeijer JC, Kremen C, Neumann P, Schweiger O, Kunin WE (2010) Global pollinator declines: trends, impacts and drivers. Trends Ecol Evol 25:345–353

    Article  PubMed  Google Scholar 

  • Quinn GP, Keough MJ (2002) Experimental design and data analysis for biologists. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • RCore Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Roulston TH, Goodell K (2011) The role of resources and risks in regulating wild bee populations. Annu Rev Entomol 56:293–312

    Article  CAS  PubMed  Google Scholar 

  • SAS Institute (2011) SAS/STAT software version 9.3. SAS Institute Inc, Cary

  • Statistics Canada (2012) Victoria, British Columbia (Code 935) and British Columbia (Code 59) (table). Census Profile. 2011 Census. Statistics Canada catalogue no. 98-316-XWE. Ottawa. Released October 24, 2012. http://www12.statcan.gc.ca/census-recensement/2011/dp-pd/prof/index.cfm?Lang=E. Accessed 7 Mar 2014

  • Svensson B, Lagerlöf J, Svensson BG (2000) Habitat preferences of nest-seeking bumble bees (Hymenoptera: Apidae) in an agricultural landscape. Agric Ecosyst Environ 77:247–255

    Article  Google Scholar 

  • Tarrant S, Ollerton J, Rahman ML, Tarrant J, McCollin D (2013) Grassland restoration on landfill sites in the East Midlands, United Kingdom: An evaluation of floral resources and pollinating insects. Restor Ecol 21:560–568

    Article  Google Scholar 

  • Westrich P (1996) Habitat requirements of central European bees and the problems of partial habitats. In: Matheson A, Buchanan S, O’Toole C et al (eds) The Conservation of Bees. Academic Press, London, pp 1–16

    Google Scholar 

  • Williams NM, Kremen C (2007) Resource distributions among habitats determine solitary bee offspring production in a mosaic landscape. Ecol Appl 17:910–921

    Article  PubMed  Google Scholar 

  • Williams NM, Regetz J, Kremen C (2012) Landscape-scale resources promote colony growth but not reproductive performance of bumble bees. Ecology 93:1049–1058

    Article  PubMed  Google Scholar 

  • Winfree R, Griswold T, Kremen C (2007) Effect of human disturbance on bee communities in a forested ecosystem. Conserv Biol 21:213–223

    Article  PubMed  Google Scholar 

  • Winfree R, Aguilar R, Vázquez DP, LeBuhn G, Aizen MA (2009) A meta-analysis of bees’ responses to anthropogenic disturbance. Ecology 90:2068–2076

    Article  PubMed  Google Scholar 

  • Winfree R, Bartomeus I, Cariveau DP (2011) Native pollinators in anthropogenic habitats. Ann Rev Ecol Evol S 42:1–22

    Article  Google Scholar 

  • Wray JC, Neame LA, Elle E (2014) Floral resources, body size, and surrounding landscape influence bee community assemblages in oak-savannah. Ecol Entomol 39:83–93

    Article  Google Scholar 

  • Zuur AF, Ieno EN, Smit GM (2007) Analysing ecological data. Springer, New York

    Book  Google Scholar 

Download references

Acknowledgments

We are grateful to T. Haapalainen for exceptional assistance in the field, and to E. Reimer and A. Martins for assistance in the lab. D. Green, M. Krawchuk, the Elle lab, and two anonymous reviewers provided valuable comments on earlier versions of this manuscript. S. C. Anderson assisted with plotting the redundancy analysis. Site access was granted by the Capitol Regional District, the National Research Council Canada, Districts of Saanich, Central Saanich, Municipalities of Oak Bay and Esquimalt and City of Victoria, and 62 hospitable property owners. Funding was provided by the Natural Sciences and Engineering Council (NSERC) of Canada through the Canadian Pollination Initiative (NSERC-CANPOLIN) and a Discovery Grant to E. Elle, and a Canada Graduate Scholarship to J. Wray. This is publication No. 114 of NSERC-CANPOLIN.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julie C. Wray.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 387 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wray, J.C., Elle, E. Flowering phenology and nesting resources influence pollinator community composition in a fragmented ecosystem. Landscape Ecol 30, 261–272 (2015). https://doi.org/10.1007/s10980-014-0121-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10980-014-0121-0

Keywords

Navigation