Predominant control of moisture on soil organic carbon mineralization across a broad range of arid and semiarid ecosystems on the Mongolia plateau

Abstract

Soil moisture and temperature are known to be the two environmental constraints regulating mineralization of soil organic carbon (SOC). However, it remains unclear to what extent the moisture, temperature, and other abiotic and biotic factors affect the mineralization of SOC across broad geographic regions. Here, we examined the effects of multiple abiotic and biotic factors on SOC mineralization across 12 widespread arid and semiarid ecosystems on the Mongolia plateau, by using an integrative approach combining short-term laboratory incubations (28-day), field survey, and structure equation modeling (SEM). Our results showed that soil moisture had a predominant control on SOC mineralization across all sites. The average CO2 emissions over all sites increased by 23 % from 30 to 60 % water filled pore space (WFPS) and by 176 % from 60 to 90 % WFPS. Under conditions of 25 °C and 60 % WFPS, the cumulative CO2–C emissions in the topsoil (0–20 cm) diminished in the following order: meadow steppe (227 mg kg−1) > typical steppe (216 mg kg−1) > desert (99 mg kg−1) > desert steppe (72 mg kg−1). The temperature sensitivity of SOC mineralization (Q10), the proportional change in carbon mineralization rate given a 10 °C temperature gradient, was highest under conditions of low temperature and high moisture, but it was lowest under high temperature and low moisture. The SEM analyses demonstrate that the mineralization potential of SOC seems to be directly regulated by microbe activity and substrate availability. Climatic factors (e.g. mean annual precipitation, mean annual temperature), above- and belowground biomass, and soil pH, which regulate SOC and microbial biomass carbon content, also indirectly influence the SOC mineralization. Our results indicate that global climate change, particularly the increase in the frequency of extreme storms and droughts, will substantially affect SOC mineralization and ecosystem carbon cycle in arid and semiarid regions.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Allison SD, Wallenstein MD, Bradford MA (2010) Soil-carbon response to warming dependent on microbial physiology. Nat Geosci 3:336–340

    CAS  Article  Google Scholar 

  2. Alvarez R, Alvarez CR (2000) Soil organic matter pools and their associations with carbon mineralization kinetics. Soil Sci Soc Am J 64:184–189

    CAS  Article  Google Scholar 

  3. Alvaro-Fuentes J, Easter M, Paustian K (2012) Climate change effects on organic carbon storage in agricultural soils of northeastern Spain. Agric Ecosyst Environ 155:87–94

    CAS  Article  Google Scholar 

  4. Bai YF, Wu JG, Pan QM, Huang JH, Wang QB, Li FS, Buyantuyev A, Han XG (2007) Positive linear relationship between productivity and diversity: evidence from the Eurasian Steppe. J Appl Ecol 44:1023–1034

    Article  Google Scholar 

  5. Bai YF, Wu JG, Xing Q, Pan QM, Huang JH, Yang DL, Han XG (2008) Primary production and rain use efficiency across a precipitation gradient on the Mongolia plateau. Ecology 89:2140–2153

    Article  PubMed  Google Scholar 

  6. Bai YF, Wu JG, Clark CM, Pan Q, Zhang L, Chen S, Wang Q, Han X (2012) Grazing alters ecosystem functioning and C: n: P stoichiometry of grasslands along a regional precipitation gradient. J Appl Ecol 49:1204–1215

    CAS  Article  Google Scholar 

  7. Balogh J, Pinter K, Foti S, Cserhalmi D, Papp M, Nagy Z (2011) Dependence of soil respiration on soil moisture, clay content, soil organic matter, and CO2 uptake in dry grasslands. Soil Biol Biochem 43:1006–1013

    CAS  Article  Google Scholar 

  8. Batjes NH (1996) Total carbon and nitrogen in the soils of the world. Eur J Soil Sci 47:151–163

    CAS  Article  Google Scholar 

  9. Boone RD, Nadelhoffer KJ, Canary JD, Kaye JP (1998) Roots exert a strong influence on the temperature sensitivity of soil respiration. Nature 396:570–572

    CAS  Article  Google Scholar 

  10. Borken W, Matzner E (2009) Reappraisal of drying and wetting effects on C and N mineralization and fluxes in soils. Glob Change Biol 15:808–824

    Article  Google Scholar 

  11. Budge K, Leifeld J, Hiltbrunner E, Fuhrer J (2011) Alpine grassland soils contain large proportion of labile carbon but indicate long turnover times. Biogeosciences 8:1911–1923

    CAS  Article  Google Scholar 

  12. Chen DM, Mi J, Chu PF, Cheng J, Zhang L, Pan Q, Xie Y, Bai Y (2014) Patterns and drivers of soil microbial communities along a precipitation gradient on the Mongolian Plateau. Landscape Ecol. doi:10.1007/s10980-014-9996-z

    Google Scholar 

  13. Conant RT, Ryan MG, Agren GI, Birge HE, Davidson EA, Eliasson PE, Evans SE, Frey SD, Giardina CP, Hopkins FM, Hyvönen R, Kirschbaum MUF, Lavallee JM, Leifeld J, Parton WJ, Steinweg JM, Wallenstein MD, Martin Wetterstedt JÅ, Bradford MA (2011) Temperature and soil organic matter decomposition rates: synthesis of current knowledge and a way forward. Glob Change Biol 17:3392–3404

    Article  Google Scholar 

  14. Davidson EA, Janssens IA (2006) Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440:165–173

    CAS  Article  PubMed  Google Scholar 

  15. Dioumaeva I, Trumbore S, Schuur EAG, Goulden ML, Litvak M, Hirsch AI (2002) Decomposition of peat from upland boreal forest: temperature dependence and sources of respired carbon. J Geophys Res-Atmos 108: Article Number: 8222

  16. Fierer N, Allen AS, Schimel JP, Holden PA (2003) Controls on microbial CO2 production: a comparison of surface and subsurface soil horizons. Glob Change Biol 9:1322–1332

    Article  Google Scholar 

  17. Garcia-Pausas J, Paterson E (2011) Microbial community abundance and structure are determinants of soil organic matter mineralisation in the presence of labile carbon. Soil Biol Biochem 43:1705–1713

    CAS  Article  Google Scholar 

  18. Grace JB (2006) Structural equation modeling and natural systems. Cambridge University Press, Cambridge

    Google Scholar 

  19. Grayston SJ, Vaughan D, Jones D (1997) Rhizosphere carbon flow in trees, in comparison with annual plants: the importance of root exudation and its impact on microbial activity and nutrient availability. Appl Soil Ecol 5:29–56

    Article  Google Scholar 

  20. Gu LH, Post WM, King AW (2004) Fast labile carbon turnover obscures sensitivity of heterotrophic respiration from soil to temperature: a model analysis. Glob Biogeochem Cycles 18:GB1022

    Article  Google Scholar 

  21. Haney RL, Franzluebbers AJ, Porter EB, Hons FM, Zuberer DA (2004) Soil carbon and nitrogen mineralization. Soil Sci Soc Am J 68:489–492

    CAS  Article  Google Scholar 

  22. Hartley IP, Ineson P (2008) Substrate quality and the temperature sensitivity of soil organic matter decomposition. Soil Biol Biochem 40:1567–1574

    CAS  Article  Google Scholar 

  23. Heimann M, Reichstein M (2008) Terrestrial ecosystem carbon dynamics and climate feedbacks. Nature 451:289–292

    CAS  Article  PubMed  Google Scholar 

  24. Herrmann A, Witter E (2002) Sources of C and N contributing to the flush in mineralization upon freeze-thaw cycles in soils. Soil Biol Biochem 34:1495–1505

    CAS  Article  Google Scholar 

  25. Jenkinson DS, Adams DE, Wild A (1991) Model estimates of CO2 emissions from soil in response to global warming. Nature 351:304–306

    CAS  Article  Google Scholar 

  26. Joergensen RG (1996) The fumigation–extraction method to estimate soil microbial biomass: calibration of the k EN value. Soil Biol Biochem 28:25–31

    CAS  Article  Google Scholar 

  27. Kadono A, Funakawa S, Kosaki T (2008) Factors controlling mineralization of soil organic matter in the Eurasian steppe. Soil Biol Biochem 40:947–955

    CAS  Article  Google Scholar 

  28. Kemmitt SJ, Lanyon CV, Waite IS, Wen Q, Addiscott TM, Bird NRA, O’donnell AG, Brookes PC (2008) Mineralization of native soil organic matter is not regulated by the size, activity or composition of the soil microbial biomass: a new perspective. Soil Biol Biochem 40:61–73

    CAS  Article  Google Scholar 

  29. Kirschbaum MUF (1995) The temperature dependence of soil organic matter decomposition and the effect of global warming on soil organic C storage. Soil Biol Biochem 27:753–760

    CAS  Article  Google Scholar 

  30. Kirschbaum MUF (2004) Soil respiration under prolonged soil warming: are rate reductions caused by acclimation or substrate loss? Glob Change Biol 10:1870–1877

    Article  Google Scholar 

  31. Kirschbaum MUF (2006) The temperature dependence of organic-matter decomposition—still a topic of debate. Soil Biol Biochem 38:2510–2518

    CAS  Article  Google Scholar 

  32. Knorr W, Prentice IC, House JI, Holland EA (2005) Long-term sensitivity of soil carbon turnover to warming. Nature 433:298–301

    CAS  Article  PubMed  Google Scholar 

  33. Kucharik CJ, Foley JA, Delire C, Fisher VA, Coe MT, Lenters JD, Young-Molling C, Ramankutty N, Norman JM, Gower ST (2000) Testing the performance of a dynamic global ecosystem model: water balance, carbon balance, and vegetation structure. Glob Biogeochem Cycles 14:795–825

    CAS  Article  Google Scholar 

  34. Li XG, Rengel Z, Mapfumo E, Bhupinderpal S (2007) Increase in pH stimulates mineralization of ‘native’ organic carbon and nitrogen in naturally salt-affected sandy soils. Plant Soil 290:269–282

    CAS  Article  Google Scholar 

  35. Liu XZ, Wan SQ, Su B, Hui DF, Luo YQ (2002) Response of soil CO2 efflux to water manipulation in a tallgrass prairie ecosystem. Plant Soil 240:213–223

    CAS  Article  Google Scholar 

  36. Liu WX, Zhang Z, Wan SQ (2009) Predominant role of water in regulating soil and microbial respiration and their responses to climate change in a semiarid grassland. Glob Change Biol 15:184–195

    Article  Google Scholar 

  37. Matzner E, Borken W (2008) Do freeze-thaw events enhance C and N losses from soils of different ecosystems? A review. Eur J Soil Sci 59:274–284

    Article  Google Scholar 

  38. Norton U, Saetre P, Hooker TD, Stark JM (2012) Vegetation and moisture controls on soil carbon mineralization in semiarid environments. Soil Sci Soc Am J 76:1038–1047

    CAS  Article  Google Scholar 

  39. Post WM, Kwon KC (2000) Soil carbon sequestration and land-use change: processes and potential. Glob Change Biol 6:317–327

    Article  Google Scholar 

  40. Raich JW, Schlesinger WH (1992) The global carbon-dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus B 44:81–99

    Article  Google Scholar 

  41. Raich JW, Tufekcioglu A (2000) Vegetation and soil respiration: correlations and controls. Biogeochemistry 48:71–90

    CAS  Article  Google Scholar 

  42. Rey A, Petsikos C, Jarvis PG, Grace J (2005) Effect of temperature and moisture on rates of carbon mineralization in a Mediterranean oak forest soil under controlled and field conditions. Eur J Soil Sci 56:589–599

    CAS  Article  Google Scholar 

  43. Robertson GP, Coleman DC, Bledsoe CS, Sollins P (eds) (1999) Standard soil methods for long-term ecological research. Oxford University Press, New York

    Google Scholar 

  44. Rousk J, Brookes PC, Bååth E (2009) Contrasting soil pH effects on fungal and bacterial growth suggest functional redundancy in carbon mineralization. Appl Environ Microbiol 75:1589–1596

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  45. Rovira P, Vallejo VR (2002) Labile and recalcitrant pools of carbon and nitrogen in organic matter decomposing at different depths in soil: an acid hydrolysis approach. Geoderma 107:109–141

    CAS  Article  Google Scholar 

  46. Schmidt MWI, Torn MS, Abiven S, Dittmar T, Guggenberger G, Janssens IA, Kleber M, Kögel-Knabner I, Lehmann J, Manning DA, Nannipieri P, Rasse DP, Weiner S, Trumbore SE (2011) Persistence of soil organic matter as an ecosystem property. Nature 478:49–56

    CAS  Article  PubMed  Google Scholar 

  47. Stemmer M, Gerzabek MH, Kandeler E (1998) Organic matter and enzyme activity in particle-size fractions of soils obtained after low-energy sonication. Soil Biol Biochem 30:9–17

    CAS  Article  Google Scholar 

  48. Strickland MS, Lauber C, Fierer N, Bradford MA (2009) Testing the functional significance of microbial community composition. Ecology 90:441–451

    Article  PubMed  Google Scholar 

  49. Suh S, Lee E, Lee J (2009) Temperature and moisture sensitivities of CO2 efflux from lowland and alpine meadow soils. J Plant Ecol 2:225–231

    Article  Google Scholar 

  50. Suseela V, Conant RT, Wallenstein MD, Dukes JS (2012) Effects of soil moisture on the temperature sensitivity of heterotrophic respiration vary seasonally in an old-field climate change experiment. Glob Change Biol 18:336–348

    Article  Google Scholar 

  51. von Lützow M, Kögel-Knabner I (2009) Temperature sensitivity of soil organic matter decomposition—what do we know? Biol Fertil Soils 46:1–15

    Article  Google Scholar 

  52. Wang CK, Yang JY, Zhang QZ (2006) Soil respiration in six temperate forests in China. Glob Change Biol 12:2103–2114

    Article  Google Scholar 

  53. Wang XW, Li XZ, Hu YM, Lv J, Sun J, Li Z, Wu Z (2010) Effect of temperature and moisture on soil organic carbon mineralization of predominantly permafrost peatland in the Great Hing’an Mountains, Northeastern China. J Environ Sci 22:1057–1066

    Article  Google Scholar 

  54. Wu X, Yao Z, Bruggemann N, Shen ZY, Wolf B, Dannenmann M, Zheng X, Butterbach-Bahl K (2010) Effects of soil moisture and temperature on CO2 and CH4 soil atmosphere exchange of various land use/cover types in a semi-arid grassland in Inner Mongolia, China. Soil Biol Biochem 42:773–787

    CAS  Article  Google Scholar 

  55. Zhou XQ, Chen CR, Wang YF, Xu Z, Hu Z, Cui X, Hao Y (2012) Effects of warming and increased precipitation on soil carbon mineralization in an Inner Mongolian grassland after 6 years of treatments. Biol Fertil Soils 48:859–866

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to Tao Sang for comments on an early version of this manuscript. We thank Hongwei Wan and Junhui Cheng for their helps with statistical analysis. We also gratefully acknowledge undergraduate students from the Inner Mongolia Agriculture University for their helps with fieldwork. This project was supported by the Natural Science Foundation of China (31030013, 31320103916), Strategic Priority Research Program of the Chinese Academy of Sciences (XDA05050400), and Land-Cover/Land-Use Program at NASA (Grant No. NNX09AK87G).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yongfei Bai.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 631 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mi, J., Li, J., Chen, D. et al. Predominant control of moisture on soil organic carbon mineralization across a broad range of arid and semiarid ecosystems on the Mongolia plateau. Landscape Ecol 30, 1683–1699 (2015). https://doi.org/10.1007/s10980-014-0040-0

Download citation

Keywords

  • SOC mineralization
  • Precipitation gradient
  • Water filled pore space (WFPS)
  • Temperature sensitivity of SOC mineralization
  • Microbial biomass carbon