Skip to main content

A method for building corridors in spatial conservation prioritization

Abstract

We introduce a novel approach to building corridors in spatial conservation prioritization. The underlying working principle is the use of a penalty structure in an iterative algorithm used for producing a spatial priority ranking. The penalty term aims to prevent loss or degradation of structural connections, or, equivalently, to promote to a higher rank landscape elements that are required to keep networks connected. The proposed method shows several convenient properties: (1) it does not require a priori specification of habitat patches, end points or related thresholds, (2) it does not rely on resistance coefficients for different habitats, (3) it does not require species targets, and (4) the cost of additional connectivity via corridors can be quantified in terms of habitat quality lost across species. Corridor strength and width parameters control the trade-off between increased structural connectivity via corridors and other considerations relevant to conservation planning. Habitat suitability or dispersal suitability layers used in the analysis can be species specific, thus allowing analysis both in terms of structural and functional connectivity. The proposed method can also be used for targeting habitat restoration, by identifying areas of low habitat quality included in corridors. These methods have been implemented in the Zonation software, and can be applied to large scale and high resolution spatial prioritization, effectively integrating corridor design and spatial conservation prioritization. Since the method operates on novel principles and combines with a large number of features already operational in Zonation, we expect it to be of utility in spatial conservation planning.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Arponen A, Lehtomaki J, Leppanen J, Tomppo E, Moilanen A (2012) Effects of connectivity and spatial resolution of analyses on conservation prioritization across large extents. Conserv Biol 26(2):294–304

    PubMed  Article  Google Scholar 

  • Beier P, Brost B (2010) Use of land facets to plan for climate change: conserving the arenas, not the actors. Conserv Biol 24(3):701–710

    Google Scholar 

  • Beier P, Spencer W, Baldwin RF, McRae BH (2011) Toward best practices for developing regional connectivity maps. Conserv Biol 25(5):879–892

    PubMed  Article  Google Scholar 

  • Bernazzani P, Bradley BA, Opperman JJ (2012) Integrating climate change into habitat conservation plans under the US Endangered Species Act. Environ Manag 49(6):1103–1114

    Article  Google Scholar 

  • Carroll C, Dunk JR, Moilanen A (2010) Optimizing resiliency of reserve networks to climate change: multispecies conservation planning in the Pacific Northwest, USA. Glob Change Biol 16(3):891–904

    Article  Google Scholar 

  • Carroll C, McRae BH, Brookes A (2012) Use of linkage mapping and centrality analysis across habitat gradients to conserve connectivity of gray wolf populations in Western North America. Conserv Biol 26(1):78–87

    PubMed  Article  Google Scholar 

  • Conchon S, Filliâtre JC (2007) A Persistent Union-Find Data Structure. In: Russo CV, Dreyer D (eds) ML’07 Proceedings of the 2007 ACM workshop on ML, Freiburg, Germany, October 2007. ACM, New York, USA, p 37–46

  • Conrad JM, Gomes CP, van Hoeve WJ, Sabharwal A, Suter JF (2012) Wildlife corridors as a connected subgraph problem. J Environ Econ Manage 63(1):1–18

    Article  Google Scholar 

  • Fennell M, Murphy JE, Armstrong C, Gallagher T, Osborne B (2012) Plant Spread Simulator: a model for simulating large-scale directed dispersal processes across heterogeneous environments. Ecol Model 230:1–10

    Article  Google Scholar 

  • Fuller T, Sarkar S (2006) LQGraph: a software package for optimizing connectivity in conservation planning. Environ Modell Softw 21(5):750–755

    Article  Google Scholar 

  • Gilbert-Norton L, Wilson R, Stevens JR, Beard KH (2010) A meta-analytic review of corridor effectiveness. Conserv Biol 24(3):660–668

    PubMed  Article  Google Scholar 

  • Heller NE, Zavaleta ES (2009) Biodiversity management in the face of climate change: a review of 22 years of recommendations. Biol Conserv 142(1):14–32

    Article  Google Scholar 

  • Killeen TJ, Solorzano LA (2008) Conservation strategies to mitigate impacts from climate change in Amazonia. Philos Trans R Soc B-Biol Sci 363(1498):1881–1888

    Article  Google Scholar 

  • Knight K (1989) Unification: a multidisciplinary survey. ACM Comput Surveys 21(1):93–124

    Article  Google Scholar 

  • Koen EL, Bowman J, Walpole AA (2012) The effect of cost surface parameterization on landscape resistance estimates. Mol Ecol Resour 12(4):686–696

    PubMed  Article  Google Scholar 

  • Lagabrielle E, Rouget M, Payet K, Wistebaar N, Durieux L, Baret S, Lombard A, Strasberg D (2009) Identifying and mapping biodiversity processes for conservation planning in islands: a case study in Reunion Island (Western Indian Ocean). Biol Conserv 142(7):1523–1535

    Google Scholar 

  • Laita A, Kotiaho JS, Mönkkonen M (2011) Graph-theoretic connectivity measures: what do they tell us about connectivity? Landscape Ecol 26(7):951–967

    Article  Google Scholar 

  • Leathwick J, Moilanen A, Francis M, Elith J, Taylor P, Julian K, Hastie T, Duffy C (2008) Novel methods for the design and evaluation of marine protected areas in offshore waters. Conserv Lett 1(2):91–102

    Google Scholar 

  • Lehtomäki J, Moilanen A (2013) Methods and workflow for spatial conservation prioritization using Zonation. Environ Modell Softw 47:128–137

    Article  Google Scholar 

  • Li H, Li D, Li T, Qiao Q, Yang J, Zhang H (2010) Application of least-cost path model to identify a giant panda dispersal corridor network after the Wenchuan earthquake-Case study of Wolong Nature Reserve in China. Ecol Model 221(6):944–952

    Google Scholar 

  • Lindenmayer DB, Possingham HP, Lacy RC, McCarthy MA, Pope ML (2002) How accurate are population models? Lessons from landscape-scale tests in a fragmented system. Ecol Lett 6(1):41–47

    Article  Google Scholar 

  • McDonnell MD, Possingham HP, Ball IR, Cousins EA (2002) Mathematical methods for spatially cohesive reserve design. Environ Model Assess 7:107–114

    Article  Google Scholar 

  • McRae BH, Dickson BG, Keitt TH, Shah VB (2008) Using circuit theory to model connectivity in ecology, evolution, and conservation. Ecology 89:2712–2724

    PubMed  Article  Google Scholar 

  • McRae BH, Hall SA, Beier P, Theobald DM (2012) Where to restore ecological connectivity? detecting barriers and quantifying restoration benefits. PLoS One 7(12):e52604

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  • Moilanen A (2007) Landscape Zonation, benefit functions and target-based planning: unifying reserve selection strategies. Biol Conserv 134(4):571–579

    Article  Google Scholar 

  • Moilanen A, Wintle BA (2007) The boundary-quality penalty: a quantitative method for approximating species responses to fragmentation in reserve selection. Conserv Biol 21(2):355–364

    PubMed  Article  Google Scholar 

  • Moilanen A, Franco AMA, Early RI, Fox R, Wintle B, Thomas CD (2005) Prioritizing multiple-use landscapes for conservation: methods for large multi-species planning problems. Proc R Soc B-Biol Sci 272(1575):1885–1891

    Article  Google Scholar 

  • Moilanen A, Wilson KA, Possingham H (eds) (2009) Spatial conservation prioritization: quantitative methods and computational tools. Oxford University Press, New York

    Google Scholar 

  • Moilanen A, Leathwick JR, Quinn JM (2011) Spatial prioritization of conservation management. Conserv Lett 4(5):383–393

    Article  Google Scholar 

  • Moilanen A, Meller L, Leppänen, J, Pouzols FM, Kujala H, Arponen A (2012) Zonation Spatial Conservation Planning Framework and Software. Version 3.1. User Manual. University of Helsinki, Finland. pp. 288

  • Moilanen A, Anderson BJ, Arponen A, Pouzols FM, Thomas CD (2013) Edge artefacts and lost performance in national versus continental conservation priority areas. Divers Distrib 19(2):171–183

    Article  Google Scholar 

  • Mönkkonen M, Mutanen M (2003) Occurrence of moths in boreal forest corridors. Conserv Biol 17(2):468–475

    Article  Google Scholar 

  • Nalle DJ, Arthur JL, Sessions J (2002) Designing compact and contiguous reserve networks with a hybrid heuristic algorithm. For Sci 48(1):59–68

    Google Scholar 

  • Naujokaitis-Lewis IR, Curtis JM, Arcese P, Rosenfeld J (2009) Sensitivity analyses of spatial population viability analysis models for species at risk and habitat conservation planning. Conserv Biol 23(1):225–229

    PubMed  Article  Google Scholar 

  • Nuñez TA, Lawler JJ, McRae BH, Pierce DJ, Krosby MB, Kavanagh DM, Singleton PH, Tewksbury JJ (2013) Connectivity planning to address climate change. Conserv Biol 27(2):407–416

    PubMed  Article  Google Scholar 

  • Önal H, Briers RS (2002) Selection of a minimum-boundary reserve network using integer programming. Proc R Soc B-Biol Sci 270:1487–1491

    Article  Google Scholar 

  • Pinto N, Keitt TH (2009) Beyond the least-cost path: evaluating corridor redundancy using a graph-theoretic approach. Landscape Ecol 24(2):253–266

    Article  Google Scholar 

  • Pinto N, Keitt T, Wainright M (2012) LORACS: JAVA software for modeling landscape connectivity and matrix permeability. Ecography 35(5):388–392

    Article  Google Scholar 

  • Rathore CS, Dubey Y, Shrivastava A, Pathak P, Patil V (2012) Opportunities of habitat connectivity for tiger (Panthera tigris) between Kanha and Pench National Parks in Madhya Pradesh, India. PLoS One 7(7):e39996

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  • Rayfield B, Moilanen A, Fortin MJ (2009) Incorporating consumer-resource spatial interactions in reserve design. Ecol Model 220(5):725–733

    Article  Google Scholar 

  • Roever CL, van Aarde RJ, Leggert K (2013) Functional connectivity within conservation networks: delineating corridors for African elephants. Biol Conserv 157:128–135

    Article  Google Scholar 

  • Rose NA, Burton PJ (2009) Using bioclimatic envelopes to identify temporal corridors in support of conservation planning in a changing climate. For Ecol Manag 258:S64–S74

    Article  Google Scholar 

  • Rouget M, Cowling RM, Lombard AT, Knight AT, Graham IHK (2006) Designing large-scale conservation corridors for pattern and process. Conserv Biol 20(2):549–561

    PubMed  Article  Google Scholar 

  • Ruckelshaus M, Hartway C, Kareiva P (2003) Assessing the data requirements of spatially explicit dispersal models. Conserv Biol 11(6):1298–1306

    Article  Google Scholar 

  • Saura S, Torné J (2009) Conefor Sensinode 2.2: a software package for quantifying the importance of habitat patches for landscape connectivity. Environ Modell Softw 24(1):135–139

    Article  Google Scholar 

  • Soille P (2004) Morphological image analysis: principles and applications, 2nd edn. Springer, Berlin

    Book  Google Scholar 

  • Theobald DM, Reed SE, Fields K, Soulé M (2012) Connecting natural landscapes using a landscape permeability model to prioritize conservation activities in the United States. Conserv Lett 5(2):123–133

    Article  Google Scholar 

  • Thomson JR, Moilanen AJ, Vesk PA, Bennett AF, Mac Nally R (2009) Where and when to revegetate: a quantitative method for scheduling landscape reconstruction. Ecol Appl 19(4):817–828

    CAS  PubMed  Article  Google Scholar 

  • Tischendorf L, Fahrig L (2000) On the usage and measurement of landscape connectivity. Oikos 90(1):7–19

    Article  Google Scholar 

  • Toteu SF, Anderson JM, de Wit M (2010) ‘Africa Alive Corridors’ Forging a new future for the people of Africa by the people of Africa. J Afr Earth Sci 58(4):692–715

    Article  Google Scholar 

  • Williams P, Hannah L, Andelman S, Midgley G, Araujo M, Hughes G, Manne L, Martinez-Meyer E, Pearson R (2005) Planning for climate change: identifying minimum-dispersal corridors for the Cape proteaceae. Conserv Biol 19(4):1063–1074

    Google Scholar 

  • Wintle B, Elith J, Potts JM (2005) Fauna habitat modelling and mapping: a review and case study in the Lower Hunter Central Coast region of NSW. Austral Ecol 30(7):19–38

    Article  Google Scholar 

Download references

Acknowledgments

We thank the ERC-StG Grant 260393 (GEDA), the Finnish Ministry of Environment and Natural Heritage Services (Metsähallitus) and the Academy of Finland centre of excellence programme 2012–2017 for support. We thank Johanna Kuusterä for technical assistance. We also thank Andrea Santangeli, Santiago Saura and three anonymous reviewers for their constructive comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Federico M. Pouzols.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pouzols, F.M., Moilanen, A. A method for building corridors in spatial conservation prioritization. Landscape Ecol 29, 789–801 (2014). https://doi.org/10.1007/s10980-014-0031-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10980-014-0031-1

Keywords

  • Boundary length penalty
  • Corridor design
  • Corridor loss penalty
  • Decision support tool
  • Structural connectivity
  • Systematic conservation planning
  • Zonation software