Advertisement

Landscape Ecology

, Volume 29, Issue 2, pp 311–328 | Cite as

Ecosystem services of regulation and support in Amazonian pioneer fronts: searching for landscape drivers

  • Michel GrimaldiEmail author
  • Johan Oszwald
  • Sylvain Dolédec
  • Maria del Pilar Hurtado
  • Izildinha  de Souza Miranda
  • Xavier Arnauld de Sartre
  • William Santos de Assis
  • Edna Castañeda
  • Thierry Desjardins
  • Florence Dubs
  • Edward Guevara
  • Valery Gond
  • Tâmara Thaiz Santana Lima
  • Raphaël Marichal
  • Fernando Michelotti
  • Danielle Mitja
  • Norberto Cornejo Noronha
  • Mariana Nascimento Delgado Oliveira
  • Bertha Ramirez
  • Gamaliel Rodriguez
  • Max Sarrazin
  • Mário Lopes da SilvaJr.
  • Luiz Gonzaga Silva Costa
  • Simão Lindoso de Souza
  • Iran Veiga
  • Elena Velasquez
  • Patrick Lavelle
Research Article

Abstract

Landscape dynamics result from forestry and farming practices, both of which are expected to have diverse impacts on ecosystem services (ES). In this study, we investigated this general statement for regulating and supporting services via an assessment of ecosystem functions: climate regulation via carbon sequestration in soil and plant biomass, water cycle and soil erosion regulation via water infiltration in soil, and support for primary production via soil chemical quality and water storage. We tested the hypothesis that patterns of land-cover composition and structure significantly alter ES metrics at two different scales. We surveyed 54 farms in two Amazonian regions of Brazil and Colombia and assessed land-cover composition and structure from remote sensing data (farm scale) from 1990 to 2007. Simple and well-established methods were used to characterize soil and vegetation from five points in each farm (plot scale). Most ES metrics were significantly correlated with land-use (plot scale) and land-cover (farm scale) classifications; however, spatial variability in inherent soil properties, alone or in interaction with land-use or land-cover changes, contributed greatly to variability in ES metrics. Carbon stock in above-ground plant biomass and water infiltration rate decreased from forest to pasture land covers, whereas soil chemical quality and plant-available water storage capacity increased. Land-cover classifications based on structure metrics explained significantly less ES metric variation than those based on composition metrics. Land-cover composition dynamics explained 45 % (P < 0.001) of ES metric variance, 15 % by itself and 30 % in interaction with inherent soil properties. This study describes how ES evolve with landscape changes, specifying the contribution of spatial variability in the physical environment and highlighting trade-offs and synergies among ES.

Keywords

Land-use intensity Soil ecosystem services Socioeconomic drivers Agro-ecosystems Carbon storage Soil chemical quality Water infiltration Trade-offs 

Notes

Acknowledgments

This work is dedicated to José Claudio Ribeiro da Silva and Maria do Espirito Santo da Silva, farmers at the Maçaranduba site involved in our research. Their murder on May 24th, 2011, was related to their commitment to biodiversity protection and sustainable development in Brazilian Amazonia. We are grateful to the Brazilian and Colombian farmers for allowing us to carry out our study, and to the Brazilian, Colombian and French students and technical staff who actively participated in field sampling and laboratory analysis. We thank two anonymous reviewers for valuable comments and suggestions. Michael Corson was responsible for post-editing the English. This research was funded by the French Agence Nationale de la Recherche through two Grants: ANR-06-PADD-001-011 (Agriculture Durable et Développement program) and ANR 06 BIODIV 009-01 (IFB-ANR) and by the Brazilian Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq).

References

  1. Aldrich SP, Walker RT, Arima EY, Caldas MM, Browder JO, Perz S (2006) Land-cover and land-use change in the Brazilian Amazon: smallholders, ranchers, and frontier stratification. Econ Geogr 82(3):265–288CrossRefGoogle Scholar
  2. Arnauld de Sartre X, Oszwald J, Ramirez B, Rodriguez G, Velazquez J, Sebille P, Lavelle P (2011) Caractéristiques socio-économiques d’une intégration régionale en Amazonie colombienne (région de Florencia, Caqueta). Caravelle. Cahiers du monde hispanique et luso-brésilien 96:91–110Google Scholar
  3. Barros E, Curmi P, Hallaire V, Chauvel A, Lavelle P (2001) The role of macrofauna in the transformation and reversibility of soil structure of an oxisol in the process of forest to pasture conversion. Geoderma 100(1–2):193–213CrossRefGoogle Scholar
  4. Bartoń K (2012) MuMIn: multi-model inference. R package version 1.8.0. http://CRAN.R-project.org/package=MuMIn
  5. Bennett EM, Peterson GD, Gordon LJ (2009) Understanding relationships among multiple ecosystem services. Ecol Lett 12(12):1394–1404PubMedCrossRefGoogle Scholar
  6. Betts RA, Malhi Y, Roberts JT (2008) The future of the Amazon: new perspectives from climate, ecosystem and social sciences. Philos Trans R Soc B Biol Sci 363(1498):1729–1735CrossRefGoogle Scholar
  7. Borcard D, Legendre P, Drapeau P (1992) Partialling out the spatial component of ecological variation. Ecology 73(3):1045–1055CrossRefGoogle Scholar
  8. Breure AM, De Deyn GB, Dominati E, Eglin T, Hedlund K, Van Orshoven J, Posthuma L (2012) Ecosystem services: a useful concept for soil policy making! Curr Opin Environ Sustain 4(5):578–585Google Scholar
  9. Burnham KP, Anderson DR (2002) Model selection and multimodel inference. A practical information-theoretic approach, 2nd edn. Springer, NYGoogle Scholar
  10. Carpenter SR, DeFries R, Dietz T, Mooney HA, Polasky S, Reid WV, Scholes RJ (2006) Millennium ecosystem assessment: research needs. Science 314(5797):257–258Google Scholar
  11. Carpenter SR, Mooney HA, Agard J, Capistrano D, DeFries RS, Diaz S, Dietz T, Duraiappah AK, Oteng-Yeboah A, Pereira HM, Perrings C, Reid WV, Sarukhan J, Scholes RJ, Whyte A (2009) Science for managing ecosystem services: beyond the millennium ecosystem assessment. Proc Natl Acad Sci USA 106(5):1305–1312Google Scholar
  12. Chaves J, Neill C, Germer S, Neto SG, Krusche A, Elsenbeer H (2008) Land management impacts on runoff sources in small Amazon watersheds. Hydrol Process 22(12):1766–1775CrossRefGoogle Scholar
  13. Davidson EA, de Araujo AC, Artaxo P, Balch JK, Brown IF, Bustamante MMC, Coe MT, DeFries RS, Keller M, Longo M, Munger JW, Schroeder W, Soares-Filho BS, Souza CM, Wofsy SC (2012) The Amazon basin in transition. Nature 481(7381):321–328Google Scholar
  14. Desjardins T, Barros E, Sarrazin M, Girardin C, Mariotti A (2004) Effects of forest conversion to pasture on soil carbon content and dynamics in Brazilian Amazonia. Agric Ecosyst Environ 103(2):365–373CrossRefGoogle Scholar
  15. Dominati E, Patterson M, Mackay A (2010) A framework for classifying and quantifying the natural capital and ecosystem services of soils. Ecol Econ 69(9):1858–1868CrossRefGoogle Scholar
  16. Dray S, Dufour AB (2007) The ade4 package: implementing the duality diagram for ecologists. J Stat Softw 22(4):1–20Google Scholar
  17. Fahrig L, Baudry J, Brotons L, Burel FG, Crist TO, Fuller RJ, Sirami C, Siriwardena GM, Martin JL (2011) Functional landscape heterogeneity and animal biodiversity in agricultural landscapes. Ecol Lett 14(2):101–112Google Scholar
  18. Fearnside PM (2005) Deforestation in Brazilian Amazonia: history, rates, and consequences. Conserv Biol 19(3):680–688CrossRefGoogle Scholar
  19. Foley JA, DeFries R, Asner GP, Barford C, Bonan G, Carpenter SR, Chapin FS, Coe MT, Daily GC, Gibbs HK, Helkowski JH, Holloway T, Howard EA, Kucharik CJ, Monfreda C, Patz JA, Prentice IC, Ramankutty N, Snyder PK (2005) Global consequences of land use. Science 309(5734):570–574Google Scholar
  20. Foley JA, Asner GP, Costa MH, Coe MT, DeFries R, Gibbs HK, Howard EA, Olson S, Patz J, Ramankutty N, Snyder P (2007) Amazonia revealed: forest degradation and loss of ecosystem goods and services in the Amazon basin. Front Ecol Environ 5(1):25–32Google Scholar
  21. Fritsch E, Herbillon AJ, Do Nascimento NR, Grimaldi M, Melfi AJ (2007) From plinthic acrisols to plinthosols and gleysols: iron and groundwater dynamics in the tertiary sediments of the upper Amazon basin. Eur J Soil Sci 58(5):989–1006CrossRefGoogle Scholar
  22. Gerwing JJ (2002) Degradation of forests through logging and fire in the eastern Brazilian. For Ecol Manage 157:131–141CrossRefGoogle Scholar
  23. Gibson L, Lee TM, Koh LP, Brook BW, Gardner TA, Barlow J, Peres CA, Bradshaw CJA, Laurance WF, Lovejoy TE, Sodhi NS (2011) Primary forests are irreplaceable for sustaining tropical biodiversity. Nature 478(7369):378–381Google Scholar
  24. Godar J, Tizado EJ, Pokorny B (2012) Who is responsible for deforestation in the Amazon? A spatially explicit analysis along the Transamazon Highway in Brazil. For Ecol Manage 267:58–73CrossRefGoogle Scholar
  25. Hall A (2008) Better RED than dead: paying the people for environmental services in Amazonia. Philos Trans R Soc B Biol Sci 363(1498):1925–1932CrossRefGoogle Scholar
  26. Higuchi N, dos Santos J, Ribeiro RJ, Minette L, Biot Y (1998) Biomassa da parte aérea da vegetação da floresta tropical umida de terra-firme da Amazônia Brasileira. Acta Amazon 28:153–166Google Scholar
  27. Hoorn C, Wesselingh FP, ter Steege H, Bermudez MA, Mora A, Sevink J, Sanmartin I, Sanchez-Meseguer A, Anderson CL, Figueiredo JP, Jaramillo C, Riff D, Negri FR, Hooghiemstra H, Lundberg J, Stadler T, Saerkinen T, Antonelli A (2010) Amazonia through time: Andean uplift, climate change, landscape evolution, and biodiversity. Science 330(6006):927–931Google Scholar
  28. Kergomard C (2000) Pratique des corrections atmosphériques en télédétection: utilisation du logiciel 5s-PC. Cybergeo 181:1–13Google Scholar
  29. Kremen C, Ostfeld RS (2005) A call to ecologists: measuring, analyzing, and managing ecosystem services. Front Ecol Environ 3(10):540–548CrossRefGoogle Scholar
  30. Lassabatère L, Angulo-Jaramillo R, Soria Ugalde JM, Cuenca R, Braud I, Haverkamp R (2006) Beerkan estimation of soil transfer parameters through infiltration experiments—BEST. Soil Sci Soc Am J 70:521–532CrossRefGoogle Scholar
  31. Lausch A, Herzog F (2002) Applicability of landscape metrics for the monitoring of landscape change: issues of scale, resolution and interpretability. Ecol Ind 2(1–2):3–15CrossRefGoogle Scholar
  32. Lavit C, Escoufier Y, Sabatier R, Traissac P (1994) The ACT (STATIS method). Comput Stat Data Anal 18:97–119CrossRefGoogle Scholar
  33. Malhi Y, Roberts JT, Betts RA, Killeen TJ, Li WH, Nobre CA (2008) Climate change, deforestation, and the fate of the Amazon. Science 319(5860):169–172PubMedCrossRefGoogle Scholar
  34. Markewitz D, Davidson E, Moutinho P, Nepstad D (2004) Nutrient loss and redistribution after forest clearing on a highly weathered soil in Amazonia. Ecol Appl 14(4):S177–S199CrossRefGoogle Scholar
  35. Martinez LJ, Zinck JA (2004) Temporal variation of soil compaction and deterioration of soil quality in pasture areas of Colombian Amazonia. Soil Tillage Res 75(1):3–17CrossRefGoogle Scholar
  36. Mathieu J, Rossi JP, Mora P, Lavelle P, Martins PFS, Rouland C, Grimaldi M (2005) Recovery of soil macrofauna communities after forest clearance in Eastern Amazonia, Brazil. Conserv Biol 19(5):1598–1605Google Scholar
  37. Mathieu J, Grimaldi M, Jouquet P, Rouland C, Lavelle P, Desjardins T, Rossi JP (2009) Spatial patterns of grasses influence soil macrofauna biodiversity in Amazonian pastures. Soil Biol Biochem 41(3):586–593Google Scholar
  38. Millennium Ecosystem Assessment (2005) Ecosystems and human well-being: synthesis. Island press, Washington, DCGoogle Scholar
  39. Mitja D, Miranda LDS, Velasquez E, Lavelle P (2008) Plant species richness and floristic composition change along a rice-pasture sequence in subsistence farms of Brazilian Amazon, influence on the fallows biodiversity (Benfica, State of Para). Agric Ecosyst Environ 124(1–2):72–84CrossRefGoogle Scholar
  40. Muchagata M, Brown K (2003) Cows, colonists and trees: rethinking cattle and environmental degradation in Brazilian Amazonia. Agric Syst 76(3):797–816CrossRefGoogle Scholar
  41. Nelson BW, Mesquita R, Pereira JLG, Souza SGA, Batista GT, Couto LB (1999) Allometric regression for improved estimate of secondary forest biomass in the central Amazon. For Ecol Manage 117:149–167CrossRefGoogle Scholar
  42. Nelson E, Mendoza G, Regetz J, Polasky S, Tallis H, Cameron D, Chan KMA, Daily GC, Goldstein J, Kareiva PM, Lonsdorf E, Naidoo R, Ricketts TH, Shaw M (2009) Modeling multiple ecosystem services, biodiversity conservation, commodity production, and tradeoffs at landscape scales. Front Ecol Environ 7(1):4–11Google Scholar
  43. Oksanen J, Blanchet G, Kindt R, Legendre P, Minchin PR, O'Hara RB, Simpson GL, Solymos P, Henry M, Stevens H, Wagner H (2013) Vegan: community ecology package. R package version 2.0-8Google Scholar
  44. Oszwald J, Gond V, Dolédec S, Lavelle P (2011) Identification d’indicateurs de changement d’occupation du sol pour le suivi des mosaïques paysagères. Bois et Forêts des Tropiques 307(1):7–21Google Scholar
  45. Pachepsky YA, Rawls WJ (2004) Development of pedotransfer functions in soil hydrology. Developments in Soil Science, vol 30. Elsevier, AmsterdamGoogle Scholar
  46. Pansu M, Gautheyrou J (2006) Handbook of soil analysis. Mineralogical, organic and inorganic methods. Springer, BerlinGoogle Scholar
  47. Phillips OL, Aragao LEOC, Lewis SL, Fisher JB, Lloyd J, Lopez-Gonzalez G, Malhi Y, Monteagudo A, Peacock J, Quesada CA, van der Heijden G, Almeida S, Amaral I, Arroyo L, Aymard G, Baker TR, Banki O, Blanc L, Bonal D, Brando P, Chave J, Alves de Oliveira AC, Cardozo ND, Czimczik CI, Feldpausch TR, Freitas MA, Gloor E, Higuchi N, Jimenez E, Lloyd G, Meir P, Mendoza C, Morel A, Neill DA, Nepstad D, Patino S, Cristina Penuela M, Prieto A, Ramirez F, Schwarz M, Silva J, Silveira M, Thomas AS, ter Steege H, Stropp J, Vasquez R, Zelazowski P, Alvarez Davila E, Andelman S, Andrade A, Chao KJ, Erwin T, Di Fiore A, Honorio CE, Keeling H, Killeen TJ, Laurance WF, Pena Cruz A, Pitman NCA, Nunez Vargas P, Ramirez-Angulo H, Rudas A, Salamao R, Silva N, Terborgh J, Torres-Lezama A (2009) Drought sensitivity of the Amazon rainforest. Science 323(5919):1344–1347Google Scholar
  48. Quesada CA, Phillips OL, Schwarz M, Czimczik CI, Baker TR, Patino S, Fyllas NM, Hodnett MG, Herrera R, Almeida S, Davila EA, Arneth A, Arroyo L, Chao KJ, Dezzeo N, Erwin T, di Fiore A, Higuchi N, Coronado EH, Jimenez EM, Killeen T, Lezama AT, Lloyd G, Lopez-Gonzalez G, Luizao FJ, Malhi Y, Monteagudo A, Neill DA, Vargas PN, Paiva R, Peacock J, Penuela MC, Cruz AP, Pitman N, Priante N, Prieto A, Ramirez H, Rudas A, Salomao R, Santos AJB, Schmerler J, Silva N, Silveira M, Vasquez R, Vieira I, Terborgh J, Lloyd J (2012) Basin-wide variations in Amazon forest structure and function are mediated by both soils and climate. Biogeosciences 9(6):2203–2246Google Scholar
  49. Robinson DA, Lebron I, Vereecken H (2009) On the definition of the natural capital of soils: a framework for description, evaluation and monitoring. Soil Sci Soc Am J 73:1904–1911CrossRefGoogle Scholar
  50. Rodrigues ASL, Ewers RM, Parry L, Souza C, Veríssimo A, Balmford A (2009) Boom-and-bust development patterns across the Amazon deforestation frontier. Science 324(5933):1435–1437PubMedCrossRefGoogle Scholar
  51. Silva Costa LG, Miranda IS, Grimaldi M, Silva ML Jr, Mitja D, Lima TTS (2012) Biomass in different types of land use in the Brazil’s ‘arc of deforestation’. For Ecol Manage 278:101–109CrossRefGoogle Scholar
  52. Stark NM, Jordan CF (1978) Nutrient retention by the root mat of an Amazonian rain forest. Ecology 59(3):434–437CrossRefGoogle Scholar
  53. R Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria. http://www.R-project.org/
  54. Turner MG (2010) Disturbance and landscape dynamics in a changing world. Ecology 91(10):2833–2849PubMedCrossRefGoogle Scholar
  55. Velasquez E, Lavelle P, Andrade M (2007) GISQ, a multifunctional indicator of soil quality. Soil Biol Biochem 39(12):3066–3080CrossRefGoogle Scholar
  56. Zimmermann B, Elsenbeer H, De Moraes JM (2006) The influence of land-use changes on soil hydraulic properties: implications for runoff generation. For Ecol Manage 222(1–3):29–38CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Michel Grimaldi
    • 1
    Email author
  • Johan Oszwald
    • 2
  • Sylvain Dolédec
    • 3
  • Maria del Pilar Hurtado
    • 4
  • Izildinha  de Souza Miranda
    • 5
  • Xavier Arnauld de Sartre
    • 6
  • William Santos de Assis
    • 7
  • Edna Castañeda
    • 8
  • Thierry Desjardins
    • 1
  • Florence Dubs
    • 1
  • Edward Guevara
    • 4
  • Valery Gond
    • 9
  • Tâmara Thaiz Santana Lima
    • 5
  • Raphaël Marichal
    • 1
  • Fernando Michelotti
    • 7
  • Danielle Mitja
    • 10
  • Norberto Cornejo Noronha
    • 5
  • Mariana Nascimento Delgado Oliveira
    • 5
  • Bertha Ramirez
    • 8
  • Gamaliel Rodriguez
    • 8
  • Max Sarrazin
    • 11
  • Mário Lopes da SilvaJr.
    • 5
  • Luiz Gonzaga Silva Costa
    • 5
  • Simão Lindoso de Souza
    • 7
  • Iran Veiga
    • 7
  • Elena Velasquez
    • 12
  • Patrick Lavelle
    • 1
    • 4
    • 12
  1. 1.Biogeochemistry and Ecology of Continental Environments (BIOEMCO) Research Unit (UMR IRD 211), Institute of Research for Development (IRD)IRD-France-Nord Research CentreBondy CedexFrance
  2. 2.Climate and Land Use by Remote Sensing (COSTEL) Research Unit (UMR CNRS 6554)Rennes 2 UniversityRennes CedexFrance
  3. 3.UMR 5023, LEHNA, Biodiversité des Ecosystèmes LotiquesUniversité Lyon 1Villeurbanne CedexFrance
  4. 4.International Center for Tropical Agriculture (CIAT)CaliColombia
  5. 5.Rural Federal University of Amazonia (UFRA)BelémBrazil
  6. 6.Society Environment Territory (SET), UMR CNRS 5603Pau & Pays Adour University (UPPA)PauFrance
  7. 7.Federal University of Pará (UFPA)BelémBrazil
  8. 8.University of AmazoniaFlorencia, CaquetáColombia
  9. 9.Center for International Agricultural Research for Development (CIRAD), Goods and Services of Tropical Forest Ecosystems (UPR B&SEF)MontpellierFrance
  10. 10.Space for Development Research Unit (ESPACE-DEV UMR)Institute of Research for Development (IRD)MontpellierFrance
  11. 11.Institute of Research for Development (IRD)CayenneFrench Guiana
  12. 12.National University of ColombiaPalmiraColombia

Personalised recommendations