Landscape Ecology

, Volume 29, Issue 1, pp 55–66 | Cite as

Recreation shapes a “landscape of fear” for a threatened forest bird species in Central Europe

  • Sascha RösnerEmail author
  • Emily Mussard-Forster
  • Tomáš Lorenc
  • Jörg Müller
Research Article


Predators can create a “landscape of fear” that influences the spatial distribution of their prey. Understanding whether human activity similarly affects the distribution of species beyond habitat suitability is crucial but difficult to assess for conservation managers. Here, we assessed the effect of recreation and forestry activity on a threatened forest-dwelling umbrella species, the Capercaillie (Tetrao urogallus). We followed the citizen science approach on the landscape scale in the Bohemian Forest. We analyzed species data non-invasively collected through intensive fieldwork by volunteers and assessed human activity in the entire study area by analyzing expert questionnaires. The study area extends over 119,000 ha and harbors one of the largest relict populations of this grouse species in Central European low mountain ranges. Our statistical models revealed a negative impact of recreational activities on the intensity of habitat use of the birds within suitable habitats, thereby pointing toward a landscape of fear. The influence of forestry activity, in contrast, was not clear. In comparison to existing regional tourism impact studies, we were able to elevate the examination to the landscape scale. Our results underlined the relevance of recreation in limiting the species’ habitat on an entire landscape and allow us to conclude that habitat managers should set aside well-defined zones without recreational activities to preserve the refuge of this umbrella species.


Tetrao urogallus Human disturbance Tetraonidae Citizen science Non-invasive data collection 



We thank the numerous non-professional ornithologists, rangers, foresters, hunters, and enthusiasts on both sides of the border for their countless hours in the field reporting observations and collecting samples, and for completing questionnaires. Special thanks goes to Y. Tiede, S. Michl, G. Fischl, C. Heuck, C. Budach, J. Stastny, I. Möller, K.H. Schindlatz, and J. Macher, who intensively supported fieldwork and data processing. We thank W. Scherzinger and R. Palme for general support. B. Schröder, A. Zeileis, T. Hothorn and T.B. Mueller provided valuable advice for statistical analysis. M. Teuscher provided raw data from previous Capercaillie habitat surveys. We thank R.F. Graf and one anonymous referee for helpful comments that considerably helped to improve a previous version of this manuscript. Karen A. Brune thankfully revised the language.

Supplementary material

10980_2013_9964_MOESM1_ESM.docx (706 kb)
Supplementary material 1 (DOCX 706 kb)


  1. Arlettaz R, Patthey P, Baltic M, Leu T, Schaub M, Palme R, Jenni-Eiermann S (2007) Spreading free-riding snow sports represent a novel serious threat for wildlife. Proc Biol Sci 274:1219–1224PubMedCentralPubMedCrossRefGoogle Scholar
  2. Bässler C (2004) Das Klima im Nationalpark Bayerischer Wald—Darstellung, Entwicklung und Auswirkung. Nationalparkverwaltung Bayerischer Wald, Grafenau, GermanyGoogle Scholar
  3. Bates D, Maechler M, Bolker B (2013) lme4: linear mixed-effects models using S4 classes. R package version 0.999999-2.
  4. Berger J (2007) Fear, human shields and the redistribution of prey and predators in protected areas. Biol Lett 3:620–623PubMedCentralPubMedCrossRefGoogle Scholar
  5. Bjørnstad ON, Falck W (2001) Nonparametric spatial covariance functions: estimation and testing. Environ Ecol Stat 8:53–70Google Scholar
  6. Bollmann K, Graf RF, Suter W (2010) Quantitative predictions for patch occupancy of Capercaillie in fragmented habitats. Ecography 34:276–286CrossRefGoogle Scholar
  7. Braunisch V, Suchant R (2007) A model for evaluating the ‘habitat potential’ of a landscape for Capercaillie Tetrao urogallus: a tool for conservation planning. Wildl Biol 13:21–33CrossRefGoogle Scholar
  8. Braunisch V, Patthey P, Arlettaz R (2011) Spatially explicit modeling of conflict zones between wildlife and snow sports: prioritizing areas for winter refuges. Ecol Appl 21:955–967PubMedCrossRefGoogle Scholar
  9. Čas M (2012) The changes in rural and forest landscape and their use in the Slovenian Alps in the last centuries—a “back to nature” tourism with impacts, a case of Western Capercaillie. In: Strategies for tourism industry—micro and macro perspectives., pp 339–372. doi: 10.5772/2685
  10. Ciuti S, Muhly TB, Paton DG, McDevitt AD, Musiani M, Boyce MS (2012) Human selection of elk behavioural traits in a landscape of fear. Proc R Soc Lond B 279:4407–4416CrossRefGoogle Scholar
  11. Cole DN, Landres PB (1995) Indirect effects of recreation on wildlife. In: Knight RL, Gutzwiller KJ (eds) Wildlife and recreationists. Coexistence through management and research. Island Press, Washington, DC, pp 183–202Google Scholar
  12. Czech B, Krausman PR, Devers PK (2000) Economic associations among causes of species endangerment in the United States. Bioscience 50:593–601CrossRefGoogle Scholar
  13. Dickinson JL, Zuckerberg B, Bonter DN (2010) Citizen science as an ecological research tool: challenges and benefits. Annu Rev Ecol Evol Syst 41:149–172CrossRefGoogle Scholar
  14. Erb PL, McShea WJ, Guralnick RP (2012) Anthropogenic influences on macro-level mammal occupancy in the Appalachian trail corridor. PLoS ONE 7:e42574PubMedCentralPubMedCrossRefGoogle Scholar
  15. Fernandez-Juricic E (2002) Can human disturbance promote nestedness? A case study with breeding birds in urban habitat fragments. Oecologia 131:269–278CrossRefGoogle Scholar
  16. Frederick PC, Collopy MW (1989) Researcher disturbance in colonies of wading birds: effects of frequency of visit and egg-marking on reproductive parameters. Colon Waterbird 12:152–157CrossRefGoogle Scholar
  17. González LM, Arroyo BE, Margalida A et al (2006) Effect of human activities on the behaviour of breeding Spanish imperial eagles (Aquila adalberti): management implications for the conservation of a threatened species. Anim Conserv 9:85–89CrossRefGoogle Scholar
  18. Graf RF, Bollmann K, Suter W, Bugmann H (2005) The importance of spatial scale in habitat models: Capercaillie in the Swiss Alps. Landscape Ecol 20:703–717CrossRefGoogle Scholar
  19. Graf RF, Kramer-Schadt S, Fernández N, Grimm V (2007) What you see is where you go? Modeling dispersal in mountainous landscapes. Landscape Ecol 22:853–866CrossRefGoogle Scholar
  20. Grimm V, Storch I (2000) Minimum viable population size of Capercaillie Tetrao urogallus: results from a stochastic model. Wildl Biol 6:219–225Google Scholar
  21. Hothorn T, Müller J, Schröder B, Kneib T, Brandl R (2011) Decomposing environmental, spatial, and spatiotemporal components of species distributions. Ecol Monogr 81:329–347. doi: 10.1890/10-0602.1 CrossRefGoogle Scholar
  22. Job H (2008) Die Destination Nationalpark Bayerischer Wald als regionaler Wirtschaftsfaktor. Nationalparkverwaltung Bayerischer Wald. GrafenauGoogle Scholar
  23. Job H, Mayer M, Woltering M, Müller M, Harrer B, Metzler D (2008) Der Nationalpark Bayerischer Wald als regionaler Wirtschaftsfaktor. Berichte aus dem Nationalpark 2008:4Google Scholar
  24. Klaus S (1991) Effects of forestry on grouse populations: case studies from the Thuringian and Bohemian forests, Central Europe. Ornis Scand 22:218–223CrossRefGoogle Scholar
  25. Knight RL, Cole DN (1995) Factors that influence wildlife responses to recreationists. In: Knight RL, Gutzwiller KJ (eds) Wildlife and recreationists: coexistence through management and research. Island Press, Washington DC, pp 71–79Google Scholar
  26. Kurki S, Nikula A, Helle P, Linden H (2000) Landscape fragmentation and forest composition effects on grouse breeding success in boreal forests. Ecology 81:1985–1997Google Scholar
  27. Laundré JW, Hernández L, Altendorf KB (2001) Wolves, elk, and bison: reestablishing the “landscape of fear” in Yellowstone National Park, USA. Can J Zool 79:1401–1409CrossRefGoogle Scholar
  28. Lausch A, Heurich M, Fahse L (2012) Spatio-temporal infestation patterns of Ips typographus (L.) in the Bavarian Forest National Park, Germany. Ecol Indic 31:73–81CrossRefGoogle Scholar
  29. Lehnert LW, Bässler C, Brandl R, Burton PJ, Müller J (2013) Conservation value of forests attacked by bark beetles: highest number of indicator species is found in early successional stages. J Nat Conserv 21:97–104CrossRefGoogle Scholar
  30. Miller SG, Knight RL, Miller CK (2001) Wildlife responses to pedestrians and dogs. Wildl Soc Bull 29:124–132Google Scholar
  31. Mollet P, Thiel D (2009) Winter tourism influences the behaviour and the stress physiology of the Capercaillie. Schweizer Zeitschrift Forstwes 160:311–317CrossRefGoogle Scholar
  32. Mollet P, Badilatti B, Bollmann K, Graf RF, Hess R, Jenny H, Mulhauser B, Perrenoud A, Rudmann F, Sachot S, Studer J (2003) Verbreitung und Bestand des Auerhuhns Tetrao urogallus in der Schweiz 2001 und ihre Veränderungen im 19. und 20. Jahrhundert. Ornithol Beob 100:67–86Google Scholar
  33. Müller J, Noss RF, Bussler H, Brandl R (2010) Learning from a “benign neglect strategy” in a national park: response of saproxylic beetles to dead wood accumulation. Biol Conserv 143:2559–2569CrossRefGoogle Scholar
  34. Pakkala T, Pellikka J, Lindén H (2003) Capercaillie Tetrao urogallus—a good candidate for an umbrella species in taiga forests. Wildl Biol 9:309–316Google Scholar
  35. R Core Team (2012) R: a language and environment for statistical computing. R foundation for statistical computing, Vienna, Austria. ISBN 3-900051-07-0,
  36. Reed SE, Merenlender AM (2008) Quiet, nonconsumptive recreation reduces protected area effectiveness. Conserv Lett 1:146–154CrossRefGoogle Scholar
  37. Rolstad J, Wegge P (1989) Effects of logging on Capercaillie (Tetrao urogallus) leks. Scand J Forest Res 4:111–127CrossRefGoogle Scholar
  38. Rupf R, Wyttenbach M, Köchli D, Hediger M, Lauber S, Ochsner P, Graf R (2011) Assessing the spatio-temporal pattern of winter sports activities to minimize disturbance in Capercaillie habitats. Ecomont 3:23–32Google Scholar
  39. Scherzinger W (2003) Artenschutzprojekt Auerhuhn im Nationalpark Bayerischer Wald von 1985–2000. Wissenschaftliche Reihe Nationalpark Bayerischer Wald 15:19–32Google Scholar
  40. Scherzinger W (2009) The fundamental niche of the Capercaillie Tetrao urogallus. Ornitholog Anz 48:19–32Google Scholar
  41. Seibold S, Hempel A, Piehl S, Bässler C, Brandl R, Rösner S, Müller J (2013) Forest vegetation structure has more influence on predation risk 1 of artificial ground nests than human activities. Basic Appl Ecol (accepted)Google Scholar
  42. Seidl R, Schelhaas MJ, Lexer MJ (2011) Unraveling the drivers of intensifying forest disturbance regimes in Europe. Glob Chang Biol 17:2842–2852CrossRefGoogle Scholar
  43. Stoen OG, Wegge P, Haid S, Hjeljord O, Nellemann C (2010) The effect of recreational homes on willow ptarmigan (Lagopus lagopus) in a mountain area of Norway. Eur J Wildl Res 56:789–795Google Scholar
  44. Storch I (1991) Habitat fragmentation, nest site selection, and nest predation risk in Capercaillie. Ornis Scand 22:213–217CrossRefGoogle Scholar
  45. Storch I (1995) Annual home ranges and spacing patterns of Capercaillie in Central Europe. J Wildl Manag 59:392–400CrossRefGoogle Scholar
  46. Storch I (2000) Conservation status and threats to grouse worldwide: an overview. Wildl Biol 6:195–204Google Scholar
  47. Storch I (2001) Tetrao urogallus Capercaillie. BWP Update. 3:1–24Google Scholar
  48. Storch I (2007) Conservation status of grouse worldwide: an update. Wildl Biol 13:5–12CrossRefGoogle Scholar
  49. Summers RW (2000) Abernethy visitor surveys, 1991 and 1999. RSPB Report, Inverness, p 15Google Scholar
  50. Summers RW, McFarlane J, Pearce-Higgins J (2007) Measuring avoidance by Capercaillies Tetrao urogallus of woodland close to tracks. Wildl Biol 13:19–27CrossRefGoogle Scholar
  51. Taylor AR, Knight RL (2003a) Behavioral responses of wildlife to human activity: terminology and methods. Wildl Soc Bull 31:1263–1271Google Scholar
  52. Taylor AR, Knight RL (2003b) Wildlife responses to recreation and associated visitor perceptions. Ecol Appl 13:951–963CrossRefGoogle Scholar
  53. Teuscher M, Brandl R, Rösner S, Bufka L, Lorenc T, Förster B, Hothorn T, Müller J (2011) Modelling habitat suitability for the Capercaillie Tetrao urogallus in the national parks Bavarian Forest and Šumava. Ornithol Anz 50:97–113Google Scholar
  54. Teuscher M, Brandl R, Förster B, Hothorn T, Rösner S, Müller J (2013) Forest inventories are a valuable data source for habitat modelling of forest species: an alternative to remote-sensing data. Forestry 86:241–253Google Scholar
  55. Thiel D, Jenni-Eiermann S, Palme R (2005) Measuring corticosterone metabolites in droppings of Capercaillies (Tetrao urogallus). Ann N Y Acad Sci 1046:96–108Google Scholar
  56. Thiel D, Menoni E, Brenot JF, Jenni L (2007) Effects of recreation and hunting on flushing distance of Capercaillie. J Wildl Manag 71:1784–1792CrossRefGoogle Scholar
  57. Thiel D, Jenni-Eiermann S, Braunisch V, Palme R, Jenni L (2008) Ski tourism affects habitat use and evokes a physiological stress response in Capercaillie Tetrao urogallus: a new methodological approach. J Appl Ecol 453:845–853Google Scholar
  58. Thiel D, Jenni-Eiermann S, Palme R, Jenni L (2011) Winter tourism increases stress hormone levels in the Capercaillie Tetrao urogallus. Ibis 153:122–133CrossRefGoogle Scholar
  59. Tolon V, Dray S, Loison A, Zeileis A, Fischer C, Baubet E (2009) Responding to spatial and temporal variations in predation risk: space use of a game species in a changing landscape of fear. Can J Zool 87:1129–1137CrossRefGoogle Scholar
  60. Trebicky V, Cihar M (2006) Analysis of nature-based tourism in the Sumava National Park, Czech Republic: 1997–2004. Exploring the nature of management. In: Proceedings of the third international conference on monitoring and management of visitor flows in recreational and protected areas: 233–237. University of Applied Sciences Rapperswil, Rapperswil, Switzerland, 13–17 Sept 2006Google Scholar
  61. van der Zee D (1990) The complex relationship between landscape and recreation. Landscape Ecol 4:225–236CrossRefGoogle Scholar
  62. Vuong QH (1989) Likelihood ratio tests for model selection and non-nested hypotheses. Econometrica 57:307–333CrossRefGoogle Scholar
  63. Walentowski H, Ewald J, Fischer A, Kölling C, Türk W (2004) Handbuch der natürlichen Waldgesellschaften in Bayern. Geobotanica, FreisingGoogle Scholar
  64. Warton DI (2005) Many zeros does not mean zero inflation: comparing the goodness-of-fit of parametric models to multivariate abundance data. Environmetrics 16:275–289CrossRefGoogle Scholar
  65. Zeileis A, Kleiber C, Jackman S (2008) Regression models for count data in R. J Stat Softw 27:1–25Google Scholar
  66. Zuur AF, Ieni EN, Smith GM (2007) Analysing ecological data, vol 680. Springer, New YorkGoogle Scholar
  67. Zuur AF, Ieni EN, Walker N, Saveliev AA, Smith GM (2009) Mixed effects models and extensions in ecology with R. Springer, HeidelbergCrossRefGoogle Scholar
  68. Zwijacz-Kozica T, Selva N, Barja I, Silván G, Martínez-Fernández L, Illera JC, Jodłowski M (2012) Concentration of fecal cortisol metabolites in chamois in relation to tourist pressure in Tatra National Park (South Poland). Acta Theriol. doi: 10.1007/s13364-012-0108-7

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Sascha Rösner
    • 1
    • 2
    Email author
  • Emily Mussard-Forster
    • 3
  • Tomáš Lorenc
    • 4
    • 5
  • Jörg Müller
    • 1
    • 6
  1. 1.Bavarian Forest National ParkGrafenauGermany
  2. 2.Department of Ecology – Animal EcologyPhilipps-Universität MarburgMarburgGermany
  3. 3.OrlandoUSA
  4. 4.Šumava National Park and Protected Landscape AreaKašperské HoryCzech Republic
  5. 5.Horažd’oviceCzech Republic
  6. 6.Terrestrial Ecology Research Group, Department of Ecology and Ecosystem Management, Center for Food and Life Sciences WeihenstephanTechnische Universität MünchenFreisingGermany

Personalised recommendations