Landscape Ecology

, Volume 29, Issue 2, pp 261–274 | Cite as

Feedbacks between deforestation, climate, and hydrology in the Southwestern Amazon: implications for the provision of ecosystem services

  • Letícia S. Lima
  • Michael T. Coe
  • Britaldo S. Soares Filho
  • Santiago V. Cuadra
  • Lívia C. P. Dias
  • Marcos H. Costa
  • Leandro S. Lima
  • Hermann O. Rodrigues
Research Article


Forests, through the regulation of regional water balances, provide a number of ecosystem services, including water for agriculture, hydroelectric power generation, navigation, industry, fisheries, and human consumption. Large-scale deforestation triggers complex non-linear interactions between the atmosphere and biosphere, which may impair such important ecosystem services. This is the case for the Southwestern Amazon, where three important river basins (Juruá, Purus, and Madeira) are undergoing significant land-use changes. Here, we investigate the potential impacts of deforestation throughout the Amazon on the seasonal and annual water balances of these river basins using coupled climatic and hydrologic models under several deforestation scenarios. Simulations without climate response to deforestation show an increase in river discharge proportional to the area deforested in each basin, whereas those with climate response produce progressive reductions in mean annual precipitation over all three basins. In this case, deforestation decreases the mean annual discharge of the Juruá and Purus rivers, but increases that of the Madeira, because the deforestation-induced reduction in evapotranspiration is large enough to increase runoff and thus offset the reduction in precipitation. The effects of Amazon deforestation on river discharge are scale-dependent and vary across and within river basins. Reduction in precipitation due to deforestation is most severe at the end of the dry season. As a result, deforestation increases the dry-season length and the seasonal amplitude of water flow. These effects may aggravate the economic losses from large droughts and floods, such as those experienced in recent years (2005, 2010 and 2009, 2012, respectively).


Landscape dynamics Water balance Land change simulation DINAMICA EGO THMB 



We are thankful for the valuable technical support provided by teams at the Centro de Sensoriamento Remoto at Universidade Federal de Minas Gerais (Brazil), Grupo de Pesquisa em Interação Atmosfera-Biosfera at Universidade Federal de Viçosa (Brazil), and The Woods Hole Research Center (USA). We are also grateful to I. Foster Brown and Elsa R. H. Mendoza for the local data provided and Marcia Macedo for language editing. This work was supported by grants from the Gordon and Betty Moore Foundation, the National Science Foundation Division of Environmental Biology, Climate and Land Use Alliance, Fundação de Amparo à Pesquisa do Estado de Minas Gerais, Conselho Nacional de Desenvolvimento Científico e Tecnológico, CNPQ-Projeto Universal 14/2012, INCT SERVAMB, National Aeronautics and Space Administration, and AMAZONICA Research Project.

Supplementary material

10980_2013_9962_MOESM1_ESM.docx (1.3 mb)
Supplementary material 1 (DOCX 1284 kb)


  1. Anderson-Teixeira KJ, Snyder PK, Twine TE, Cuadra SV, Costa MH, DeLucia EH (2012) Climate-regulation services of natural and agricultural ecoregions of the Americas. Nat Clim Change 2:177–181CrossRefGoogle Scholar
  2. Aragão LEOC, Malhi Y, Roman-Cuesta RM, Saatchi S, Anderson LO, Shimabukuro YE (2007) Spatial patterns and fire response of recent Amazonian droughts. Geophys Res Lett 34:L07701CrossRefGoogle Scholar
  3. Avissar R, Werth D (2005) Global hydroclimatological teleconnections resulting from tropical deforestation. J Hydrometeorol 6:134–145CrossRefGoogle Scholar
  4. Bonan G (2008) Ecological climatology—concepts and applications. Cambridge University Press, New YorkCrossRefGoogle Scholar
  5. Bowman MS, Soares-Filho BS, Merry FD, Nepstad DC, Rodrigues HO, Almeida OT (2012) Persistence of cattle ranching in the Brazilian Amazon: a spatial analysis of the rationale for beef production. Land Use Policy 29:558–568CrossRefGoogle Scholar
  6. Bradshaw CJA, Sodhi NS, Peh KSH, Brook BW (2007) Global evidence that deforestation amplifies flood risk and severity in the developing world. Glob Change Biol 13:2379–2395CrossRefGoogle Scholar
  7. Brooks TM, Mittermeier RA, Fonseca GAB, Gerlach J, Hoffmann M, Lamoreux JF, Mittermeier CG, Pilgrim JD, Rodrigues ASL (2006) Global biodiversity conservation priorities. Science 313:58–61PubMedCrossRefGoogle Scholar
  8. Brown IF, Schroeder W, Setzer A, Maldonado MLR, Pantoja N, Duarte A, Marengo J (2006) Monitoring fires in Southwestern Amazonia rain forests. EOS Trans Am Geophys Union 87:253–264CrossRefGoogle Scholar
  9. Butt N, Oliveira PA, Costa MH (2011) Evidence that deforestation affects the onset of the rainy season in Rondonia, Brazil. J Geophys Res 116:D11120CrossRefGoogle Scholar
  10. Castello L, McGrath DG, Hess LL, Coe MT, Lefebvre PA, Petry P, Macedo MN, Renó VF, Arantes CC (2013) The vulnerability of Amazon freshwater ecosystems. Conserv Lett 1–13Google Scholar
  11. Coe MT, Costa MH, Botta A, Birkett C (2002) Long-term simulations of discharge and floods in the Amazon Basin. J Geophys Res 107(D20):1–17Google Scholar
  12. Coe MT, Costa MH, Howard EA (2007) Simulating the surface waters of the Amazon river basin: impacts of new river geomorphic and flow parameterizations. Hydrol Process 22:2542–2553CrossRefGoogle Scholar
  13. Coe MT, Costa MH, Soares-Filho BS (2009) The influence of historical and potential future deforestation on the stream flow of the Amazon river—land surface processes and atmospheric feedbacks. J Hydrol 369:165–174CrossRefGoogle Scholar
  14. Coe MT, Latrubesse EM, Ferreira ME, Amsler ML (2011) The effects of deforestation and climate variability on the streamflow of the Araguaia River, Brazil. Biogeochemistry 105:1–3. doi: 10.1007/s10533-011-9582-2 CrossRefGoogle Scholar
  15. Coe MT, Marthews TR, Costa MH, Galbraith D, Greenglass N, Imbuzeiro HMA, Levine NM, Malhi Y, Moorcroft P, Muza MN, Powell TL, Saleska S, Solorzano LA, Wang J (2013) Deforestation and climate feedbacks threaten the ecological integrity of south-southeastern Amazonia. Philos Trans R Soc B 368:20120155. doi: 10.1098/rstb.2012.0155 CrossRefGoogle Scholar
  16. Costa MH, Foley JA (2000) Combined effects of deforestation and doubled atmospheric CO2 concentrations on the climate of Amazonia. J Clim 13:18–34CrossRefGoogle Scholar
  17. Costa MH, Pires GF (2009) Effects of Amazon and Central Brazil deforestation scenarios on the duration of the dry season in the arc of deforestation. Int J Climatol 30:1970–1979CrossRefGoogle Scholar
  18. Costa MH, Oliveira CHC, Andrade G, Bustamante TR, Silva FA, Coe MT (2002) A macroscale hydrological dataset of river flow routing parameters for the Amazon basin. J Geophys Res 107:D20Google Scholar
  19. Costa MH, Botta A, Cardille JA (2003) Effects of large-scale changes in land cover on the discharge of the Tocantins River, Southeastern Amazonia. J Hydrol 283:206–217CrossRefGoogle Scholar
  20. Costa MH, Yanagi SNM, Souza PJOP, Ribeiro A, Rocha EJP (2007) Climate change in Amazonia caused by soybean cropland expansion, as compared to caused by pastureland expansion. Geophys Res Lett 34:L07706Google Scholar
  21. Cuadra SV, Costa MH, Kucharik CJ, Da Rocha HR, Tatsch JD, Inman-Bamber G, Da Rocha RP, Leite CC, Cabral OMR (2012) A biophysical model of sugarcane growth. Bioenergy 4(1):36–48Google Scholar
  22. D’Almeida C, Vörösmarty CJ, Hurtt GC, Marengo JA, Dingman SL, Keim BD (2007) The effects of deforestation on the hydrological cycle in Amazonia: a review on scale and resolution. Int J Climatol 27:633–647CrossRefGoogle Scholar
  23. Da Rocha RP, Cuadra SV, Reboita MS, Kruger LF, Ambrizzi T, Krusche N (2012) Effects of RegCM3 parameterizations on simulated rainy season over South America. Clim Res 52:253–265CrossRefGoogle Scholar
  24. da Silva RR, Werth D, Avissar R (2008) Regional impacts of future land-cover changes on the Amazon basin wet-season climate. J Clim 21:1153–1170CrossRefGoogle Scholar
  25. Delire C, Levis SL, Foley JA, Coe MT, Vavrus S (2002) Comparison of the climate simulated by the CCM3 coupled to two different land-surface models. Clim Dyn 19:657–669CrossRefGoogle Scholar
  26. Donner SD, Coe MT, Lenders JD, Twine TE, Foley JA (2002) Modeling the impact of hydrological changes on nitrate transport in the Mississippi River Basin from 1955 to 1994. Glob Biogeochem Cycles 16(3):1043CrossRefGoogle Scholar
  27. Eltahir EAB (1996) Role of vegetation in sustaining large-scale atmospheric circulations in the tropics. J Geophys Res 101:4255–4268CrossRefGoogle Scholar
  28. Finer M, Jenkins CN (2012) Proliferation of hydroelectric dams in the Andean Amazon and implications for Andes-Amazon connectivity. PLoS ONE 7(4):e35126PubMedCrossRefPubMedCentralGoogle Scholar
  29. Finer M, Jenkins CN, Pimm SL, Keane B, Ross C (2008) Oil and gas projects in the Western Amazon: threats to wilderness, biodiversity, and indigenous peoples. PLoS ONE 3(8):e2932PubMedCrossRefPubMedCentralGoogle Scholar
  30. Foley JA, Prentice C, Ramankutty N, Levis S, Pollard D, Sitch S, Haxeltine A (1996) An integrated biosphere model of land surface processes, terrestrial carbon balance, and vegetation dynamics. Glob Biogeochem Cycles 10:603–628CrossRefGoogle Scholar
  31. Foley JA, Asner GP, Costa MH, Coe MT, DeFries R, Gibbs HK, Howard EA, Olson S, Patz J, Ramankutty N, Snyder P (2007) Amazonia revealed: forest degradation and loss of ecosystem goods and services in the Amazon basin. Front Ecol Environ 5:25–32CrossRefGoogle Scholar
  32. Forman RTT, Godron M (1986) Landscape ecology. Wiley, New YorkGoogle Scholar
  33. Giudice R, Soares-Filho BS, Merry F, Rodrigues HO, Bowman M (2012) Timber concessions in Madre de Dios: are they a good deal? Ecol Econ 77:158–165CrossRefGoogle Scholar
  34. Gloor M, Brienen RJW, Galbraith D, Feldpausch TR, Schöngart J, Guyot JL, Espinoza JC, Lloyd J, Phillips OL (2013) Intensification of the Amazon hydrological cycle over the last two decades. Geophys Res Lett 40:1729–1733CrossRefGoogle Scholar
  35. Gordon LJ, Peterson GD, Bennett EM (2008) Agricultural modifications of hydrological flows create ecological surprises. Trends Ecol Evol 23(4):211–219PubMedCrossRefGoogle Scholar
  36. Guo Z, Xiao X, Li D (2000) An assessment of ecosystem services: water flow regulation and hydroelectric power production. Ecol Appl 10(3):925–936CrossRefGoogle Scholar
  37. Hahmann AN, Dickinson RE (1997) RCCM2-BATS model over tropical South America: applications to tropical deforestation. J Clim 10:1944–1964CrossRefGoogle Scholar
  38. Hewitson BC, Crane RG (1996) Climate downscaling: techniques and application. Clim Res 7:85–95CrossRefGoogle Scholar
  39. Imbuzeiro HMA (2010) Parameters estimation of distribution and depth of the root system through the calibration of the micrometeorological models—application to the Amazon rainforest. ScD thesis, Federal University of Viçosa, BrazilGoogle Scholar
  40. Kiehl JT, Hack JJ, Bonan GB, Boville BA, Williamson DL, Rasch PJ (1998) The national center for atmospheric research community climate model: CCM3. J Clim 11:1131–1149CrossRefGoogle Scholar
  41. Killeen TJ (2007) A perfect storm in the Amazon wilderness: development and conservation in the context of the initiative for the integration of the regional infrastructure of South America (IIRSA). Adv Appl Biodivers Sci 7:105Google Scholar
  42. Kirkby CA, Giudice R, Day B, Turner K, Soares-Filho BS, Rodrigues HO, Yu DW (2011) Closing the ecotourism-conservation loop in the Peruvian Amazon. Environ Conserv 38(1):6–17CrossRefGoogle Scholar
  43. Kucharik CJ (2003) Evaluation of a process-based agro-ecosystem model (Agro-IBIS) across the U.S. Corn Belt: simulations of the inter-annual variability in maize yield. Earth Interact 7(14):1–33CrossRefGoogle Scholar
  44. Kucharik CJ, Foley JA, Delire C, Fisher VA, Coe MT, Lenters JD, Young-Molling C, Ramankutty N (2000) Testing the performance of a dynamic global ecosystem model: water balance, carbon balance, and vegetation structure. Glob Biogeochem Cycles 14:795–825CrossRefGoogle Scholar
  45. Latrubesse EM, Amsler ML, De Morais RP, Aquino S (2009) The geomorphologic response of a large pristine alluvial river to tremendous deforestation in the South American tropics: the case of the Araguaia river. Geomorphology 113:239–252CrossRefGoogle Scholar
  46. Laurance WF, Williamson GB (2001) Positive feedbacks among forest fragmentation, drought, and climate change in the Amazon. Conserv Biol 15:1529–1535CrossRefGoogle Scholar
  47. Lehner B, Verdin K, Jarvis A (2008) New global hydrography derived from spaceborne elevation data. EOS Trans Am Geophys Union 89:93–96CrossRefGoogle Scholar
  48. Lewis SL, Brando PM, Phillips OL, van der Heijden GMF, Nepstad D (2011) The 2010 Amazon drought. Science 331:554PubMedCrossRefGoogle Scholar
  49. Li KY, Coe MT, Ramankutty N, De Jong R (2007) Modeling the hydrological impact of land-use change in West Africa. J Hydrol 337:258–268CrossRefGoogle Scholar
  50. Lima Leticia S, Lima Leandro S, Soares-Filho BS, Coe MT, Ferreira BM, Rodrigues HO (2013) Interfaces gráficas em auxílio à implementação e ao uso de modelos hidrológicos. In: Simpósio Brasileiro de Sensoriamento Remoto, Foz do Iguaçu, RS, BrazilGoogle Scholar
  51. Malhado ACM, Pires GF, Costa MH (2010) Cerrado conservation is essential to protect the Amazon rainforest. Ambio 39:580–584PubMedCrossRefPubMedCentralGoogle Scholar
  52. Malhi Y, Roberts JT, Betts RA, Killeen TJ, Li W, Nobre CA (2008) Climate change, deforestation, and the fate of the Amazon. Science 319:169–172PubMedCrossRefGoogle Scholar
  53. Malhi Y, Aragao LEOC, Galbraith D, Huntingford C, Fisher R, Zelazowski P, Sitch S, McSweeney C, Meir P et al (2009) Exploring the likelihood and mechanism of a climate-change-induced dieback of the Amazon rainforest. Proc Natl Acad Sci USA. doi: 10.1073/pnas.0804619106 PubMedGoogle Scholar
  54. Mann CC (2008) Ancient earthmovers of the Amazon. Science 321:1148–1152PubMedCrossRefGoogle Scholar
  55. Marengo JA, Nobre CA, Tomasella J, Oyama MD, Oliveira GSD, Oliveira RD, Camargo H, Alves LM, Brown IF (2008) The Drought of Amazonia in 2005. J Clim 21:495–516CrossRefGoogle Scholar
  56. McClain ME, Boyer EW, Dent L, Gergel SE, Grimm NB, Groffman PM, Hart SC, Harvey JW, Johnston CA, Mayorga E, McDowell WH, Pinay G (2003) Biogeochemical hot spots and hot moments at the interface of terrestrial and aquatic ecosystems. Ecosyst 6:301–312CrossRefGoogle Scholar
  57. Meybeck M (1982) Carbon, nitrogen, and phosphorus transport by world rivers. Am J Sci 282:401–450CrossRefGoogle Scholar
  58. Millennium Ecosystem Assessment (2005) Ecosystems and Human Well-being: Synthesis. Island Press, Washington, DCGoogle Scholar
  59. Miller JR, Russell GL, Caliri G (1994) Continental-scale river flow in climate models. J Clim 7:914–928CrossRefGoogle Scholar
  60. Mitchell TD, Jones PD (2005) An improved method of constructing a database of monthly climate observations and associated high-resolution grids. Int J Climatol 25:693–712CrossRefGoogle Scholar
  61. Mittermeier RA, Mittermeier CG, Brooks TM, Pilgrim JD, Kosntant WR, Fonserca GAB, Kormos C (2003) Wilderness and biodiversity conservation. Proc Natl Acad Sci USA 100:10309–10313PubMedCrossRefGoogle Scholar
  62. Nepstad DC, Tohver IM, Ray D, Moutinho P, Cardinot G (2007) Mortality of large trees and lianas following experimental drought in an Amazon forest. Ecology 88:2259–2269PubMedCrossRefGoogle Scholar
  63. Nepstad D, Soares-Filho BS, Merry F, Lima A, Moutinho P, Carter J, Bowman M, Cattaneo A, Rodrigues H, Schwartzman S, McGrath DG, Sticker CM, Lubowski R, Piris-Cabezas P, Rivero S, Alencar A, Almeida O, Stella O (2009) The end of deforestation in the Brazilian Amazon. Science 326:1350–1351PubMedCrossRefGoogle Scholar
  64. Nobre CA, Sellers PJ, Shukla J (1991) Amazonian deforestation and regional climate change. J Clim 4:957–988CrossRefGoogle Scholar
  65. Nunes F, Soares-Filho BS, Giudice R, Rodrigues H, Bowman M, Silvestrini R, Mendoza E (2012) Environ Conserv 39(2):132–143CrossRefGoogle Scholar
  66. Oliveira LJC, Costa MH, Soares-Filho BS, Coe MT (2013) Large-scale expansion of agriculture in Amazonia may be a no-win scenario. Environ Res Lett 8:024021CrossRefGoogle Scholar
  67. Osborne TM, Lawrence DM, Challinor AJ, Slingo JM, Wheeler TR (2007) Development and assessment of a coupled crop-climate model. Glob Change Bio 13:169–183CrossRefGoogle Scholar
  68. Perz SG, Brilhante S, Brown F, Caldas M, Ikeda S, Mendoza E, Overdevest C, Reis V, Reyes JF, Rojas D, Schmink M, Souza C, Walker R (2008) Road building, land use and climate change: prospects for environmental governance in the Amazon. Phil Trans R Soc B 363:1889–1895PubMedCrossRefGoogle Scholar
  69. Phillips OL, Aragao L, Lewis SL, Fisher JB, Lloyd J, Lopez-Gonzalez G, Malhi Y, Monteagudo A, Peacock J, Quesada CA, van der Heijden G, Almeida S, Amaral I, Arroyo L, Aymard G, Baker TR, Banki O, Blanc L, Bonal D, Brando P, Chave J, de Oliveira ACA, Cardozo ND, Czimczik CI, Feldpausch TR, Freitas MA, Gloor E, Higuchi N, Jimenez E, Lloyd G, Meir P, Mendoza C, Morel A, Neill DA, Nepstad D, Patino S, Penuela MC, Prieto A, Ramirez F, Schwarz M, Silva J, Silveira M, Thomas AS, ter Steege H, Stropp J, Vasquez R, Zelazowski P, Davila EA, Andelman S, Andrade A, Chao KJ, Erwin T, Di Fiore A, Honorio E, Keeling H, Killeen TJ, Laurance WF, Cruz AP, Pitman NCA, Vargas PN, Ramirez-Angulo H, Rudas A, Salamao R, Silva N, Terborgh J, Torres-Lezama A (2009) Drought sensitivity of the Amazon rainforest. Science 323:1344–1347PubMedCrossRefGoogle Scholar
  70. Poff NJ, Allan JD (1995) Functional organization of stream fish assemblages in relation to hydrological variability. Ecology 76:606–627CrossRefGoogle Scholar
  71. Postel SL, Thompson BH Jr (2005) Watershed protection: capturing the benefits of nature’s water supply services. Nat Resour Forum 29:98–108CrossRefGoogle Scholar
  72. Ramankutty N, Foley JA (1998) Characterizing patterns of global land use: an analysis of global croplands data. Glob Biogeochem Cycles 12:667–685CrossRefGoogle Scholar
  73. Ripl W (2003) Water: the bloodstream of the biosphere. Philos Trans R Soc Lond B 358(1440):1921–1934CrossRefGoogle Scholar
  74. Risser P (1995) The Allerton Park workshop revisited—a commentary. Landscape Ecol 10:129–132CrossRefGoogle Scholar
  75. Sahin V, Hall MJ (1996) The effects of afforestation and deforestation on water yields. J Hydrol 178:293–309CrossRefGoogle Scholar
  76. Sampaio G, Nobre C, Costa MH, Sayamurty P, Soares-Filho BS, Cardoso M (2007) Regional climate change over eastern Amazonia caused by pasture and soybean cropland expansion. Geophys Res Lett 34:L17709CrossRefGoogle Scholar
  77. Shukla J, Nobre C, Sellers P (1990) Amazon Deforestation and Climate Change. Science 247:1322–1325PubMedCrossRefGoogle Scholar
  78. Silvestrini RA, Soares-Filho BS, Nepstad D, Coe M, Rodrigues H, Assunção R (2011) Simulating fire regimes in the Amazon in response to climate change and deforestation. Ecol Appl 21:1573–1590PubMedCrossRefGoogle Scholar
  79. Simpson T, Peplinski J, Koch P, Allen J (2001) Metamodels for computer-based engineering design: survey and recommendations. Eng with Comput 17:129–150CrossRefGoogle Scholar
  80. Soares-Filho BS, Nepstad DC, Curran LM, Cerqueira GC, Garcia RA, Ramos CA, Voll E, McDonald A, Lefebvre P, Schlesinger P (2006) Modelling conservation in the Amazon basin. Nature 440:520–523PubMedCrossRefGoogle Scholar
  81. Soares-Filho BS, Moutinho P, Nepstad D, Anderson A, Rodrigues H, Garcia R, Dietschi L, Merry F, Bowman M, Hissa L, Silvestrini R, Maretti C (2010) Role of Brazilian Amazon protected areas in climate change mitigation. Proc Natl Acad Sci 107(24):10821–10826PubMedCrossRefGoogle Scholar
  82. Soares-Filho BS, Silvestrini R, Nepstad D, Brando P, Rodrigues HO, Alencar A, Coe M, Locks C, Lima L, Hissa LBV, Stickler C (2012a) Forest fragmentation, climate change and understory fire regimes on the Amazonian landscapes of the Xingu headwaters. Landscape Ecol 27(4):585–598CrossRefGoogle Scholar
  83. Soares-Filho BS, Lima LS, Bowman M, Hissa LV (2012b) Challenges for low-carbon agriculture and forest conservation in Brazil. Inter-American Development Bank Environmental Safeguards Unit (VPS/ESG) Technical Notes 2012Google Scholar
  84. Soares-Filho BS, Rodrigues HO, Follador M (2013) A hybrid analytical-heuristic method for calibrating land-use change models. Environ Model & Software 43:80–87CrossRefGoogle Scholar
  85. Southworth J, Marsik M, Qiu Y, Perz S, Cumming G, Stevens F, Rocha K, Duchelle A, Barnes G (2011) Roads as Drivers of Change: Trajectories across the Tri–National Frontier in MAP, the Southwestern Amazon. Remote Sens 3:1047–1066CrossRefGoogle Scholar
  86. Spracklen DV, Arnold SR, Taylor CM (2012) Observations of increased tropical rainfall preceded by air passage over forests. Nature 489:282–286PubMedCrossRefGoogle Scholar
  87. Stickler CM, Coe MT, Costa MH, Dias LC, Nepstad DC, McGrath DG, Rodrigues HO, Soares-Filho BS (2013) Dependence of hydropower energy generation on forests in the Amazon basin at local and regional scales. Proc Natl Acad Sci USA. doi: 10.1073/pnas.1215331110 PubMedGoogle Scholar
  88. Survival International Charitable Trust (2012) Survival 2012 annual report. Accessed 3 February 2013
  89. Swenson JJ, Carter CE, Domec J-C, Delgado CI (2011) Gold mining in the Peruvian Amazon: global prices, deforestation, and mercury imports. PLoS ONE 6(4):e18875PubMedCrossRefPubMedCentralGoogle Scholar
  90. Voldoire A, Royer JF (2004) Tropical deforestation and climate variability. Clim Dyn 22:857–874CrossRefGoogle Scholar
  91. Vörösmarty CJ, Moore B, Grace Al, Gildea MP, Melillo JM, Peterson BJ, Rastetter EB, Steudler PA (1989) Continental scale models of water balance and fluvial transport: an application to South America. Glob Biogeochem Cycles 3:241–265CrossRefGoogle Scholar
  92. Walling DE, Fang D (2003) Recent trends in the suspended sediment loads of the world’s rivers. Glob Planet Change 39:111–126CrossRefGoogle Scholar
  93. Wu J (2013) Key concepts and research topics in landscape ecology revisited: 30 years after the Allerton Park workshop. Landscape Ecol 28:1–11CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Letícia S. Lima
    • 1
  • Michael T. Coe
    • 2
  • Britaldo S. Soares Filho
    • 1
  • Santiago V. Cuadra
    • 3
  • Lívia C. P. Dias
    • 4
  • Marcos H. Costa
    • 4
  • Leandro S. Lima
    • 1
  • Hermann O. Rodrigues
    • 1
  1. 1.Centro de Sensoriamento RemotoUniversidade Federal de Minas GeraisBelo HorizonteBrazil
  2. 2.The Woods Hole Research CenterFalmouthUSA
  3. 3.National Temperate Agriculture Research CentreBrazilian Agricultural Research Corporation - EmbrapaPelotasBrazil
  4. 4.Departamento de Engenharia AgrícolaUniversidade Federal de ViçosaViçosaBrazil

Personalised recommendations