Landscape Ecology

, Volume 28, Issue 7, pp 1387–1400 | Cite as

Physical and land-cover variables influence ant functional groups and species diversity along elevational gradients

  • Abel Bernadou
  • Régis Céréghino
  • Hugues Barcet
  • Maud Combe
  • Xavier Espadaler
  • Vincent Fourcassié
Research article

Abstract

Of particular importance in shaping species assemblages is the spatial heterogeneity of the environment. The aim of our study was to investigate the influence of spatial heterogeneity and environmental complexity on the distribution of ant functional groups and species diversity along altitudinal gradients in a temperate ecosystem (Pyrenees Mountains). During three summers, we sampled 20 sites distributed across two Pyrenean valleys ranging in altitude from 1,009 to 2,339 m by using pitfall traps and hand collection. The environment around each sampling points was characterized by using both physical and land-cover variables. We then used a self-organizing map algorithm (SOM, neural network) to detect and characterize the relationship between the spatial distribution of ant functional groups, species diversity, and the variables measured. The use of SOM allowed us to reduce the apparent complexity of the environment to five clusters that highlighted two main gradients: an altitudinal gradient and a gradient of environmental closure. The composition of ant functional groups and species diversity changed along both of these gradients and was differently affected by environmental variables. The SOM also allowed us to validate the contours of most ant functional groups by highlighting the response of these groups to the environmental and land-cover variables.

Keywords

Ants Community ecology Elevation gradient Landscape heterogeneity Neural networks Pyrenees 

Supplementary material

10980_2013_9892_MOESM1_ESM.docx (12 kb)
Supplementary material 1 (DOCX 12 kb)
10980_2013_9892_MOESM2_ESM.tif (179 kb)
Supplementary material 2 (TIFF 180 kb)
10980_2013_9892_MOESM3_ESM.docx (15 kb)
Supplementary material 3 (DOCX 15 kb)
10980_2013_9892_MOESM4_ESM.docx (13 kb)
Supplementary material 4 (DOCX 14 kb)

References

  1. Agosti D, Majer JD, Alonso LE, Schultz TR (eds) (2000) ANTS—Standard methods for measuring and monitoring biodiversity. Smithonian Institution Press, WashingtonGoogle Scholar
  2. Andersen AN (1986) Diversity, seasonality and community organization of ants at adjacent heath and woodland sites in south-eastern Australia. Aust J Zool 34:53–64CrossRefGoogle Scholar
  3. Andersen AN (1995) A classification of Australian ant communities, based on functional groups which parallel plant life-forms in relation to stress and disturbance. J Biogeogr 22:12–29CrossRefGoogle Scholar
  4. Andersen AN (1997a) Functional groups and patterns of organization in North American ant communities: a comparison with Australia. J Biogeogr 24:433–460CrossRefGoogle Scholar
  5. Andersen AN (1997) Using ants as bioindicators: multiscale issues in ant community ecology. Conserv Ecol [online] 1(1):8. Available from http://www.consecol.org/vol1/iss1/art8/
  6. Andersen AN (2000) A global ecology of rainforest ants: functional groups in relation to environmental stress and disturbance. In: Agosti D, Majer JD, Alonso LE, Schultz TR (eds) ANTS—Standard methods for measuring and monitoring biodiversity. Smithonian Institution Press, Washington, pp 25–34Google Scholar
  7. Bates D, Maechler M, Bolker B (2011) lme4: Linear mixed-effects models using S4 classes. R package version 0.999375-42. http://CRAN.R-project.org/package=lme4
  8. Bernard F (1968) Faune de l’Europe et du Bassin Méditerranéen. 3. Les fourmis (Hymenoptera Formicidae) d’Europe occidentale et septentrionale. Masson, ParisGoogle Scholar
  9. Bestelmeyer BT, Wiens JA (1996) The effects of land use on the structure of ground-foraging ant communities in the Argentine Chaco. Ecol Appl 6:1225–1240CrossRefGoogle Scholar
  10. Brown WL Jr (1973) A comparison of the Hylean and Congo-West African rain forest ant faunas. In: Meggers BJ, Ayensu ES, Duckworth WD (eds) Tropical forest ecosystems in Africa and South America: a comparative review. Smithsonian Institution Press, Washington DC, pp 161–185Google Scholar
  11. Cerda X, Retana J, Cros S (1998) Critical thermal limits in Mediterranean ant species: trade-off between mortality risk and foraging performance. Funct Ecol 12:45–55CrossRefGoogle Scholar
  12. Céréghino R, Park YS (2009) Review of the self-organizing map (SOM) approach in water resources: commentary. Environ Modell Softw 24:945–947CrossRefGoogle Scholar
  13. Céréghino R, Leroy C, Dejean A, Corbara B (2010) Ants mediate the structure of phytotelm communities in an ant-garden bromeliad. Ecology 91:1549–1556PubMedCrossRefGoogle Scholar
  14. Chon TS (2011) Self-organizing maps applied to ecological sciences. Ecol Inform 6:50–61CrossRefGoogle Scholar
  15. Cody ML (1985) Habitat selection in birds: the roles of habitat structure, competitors and productivity. Bioscience 31:107–113CrossRefGoogle Scholar
  16. Colwell RK (2005) Estimate S, Version 7.5: statistical estimation of species richness and shared species from samples (Software and User’s Guide). Available from http://viceroy.eeb.uconn.edu/estimates
  17. Compin A, Céréghino R (2007) Spatial patterns of macroinvertebrate functional feeding groups in streams in relation to physical variables and land-cover in Southwestern France. Landscape Ecol 22:1215–1225CrossRefGoogle Scholar
  18. Crawley MJ (2007) The R book. Wiley, EnglandCrossRefGoogle Scholar
  19. Dauber J, Wolters V (2004) Edge effects on ant community structure and species richness in an agricultural landscape. Biodivers Conserv 13:901–915CrossRefGoogle Scholar
  20. Delabie JHC, Céréghino R, Groc S, Dejean A, Gibernau M, Corbara B, Dejean A (2009) Ants as biological indicators of Wayana Amerindians land use in French Guiana. C R Biol 332:673–684PubMedCrossRefGoogle Scholar
  21. Dunn RR, Agosti D, Andersen AN, Arnan X, Bruhl CA, Cerdá X, Ellison AM, Fisher BL, Fitzpatrick MC, Gibb H, Gotelli NJ, Gove AD, Guenard B, Janda M, Kaspari M, Laurent EJ, Lessard JP, Longino JT, Majer JD, Menke SB, McGlynn TP, Parr CL, Philpott SM, Pfeiffer M, Retana J, Suarez AV, Vasconcelos HL, Weiser MD, Sanders NJ (2009a) Climatic drivers of hemispheric asymmetry in global patterns of ant species richness. Ecol Lett 12:324–333PubMedCrossRefGoogle Scholar
  22. Dunn RR, Guénard B, Weiser MD, Sanders NJ (2009b) Geographic gradients. In: Lach L, Parr C, Abbot K (eds) Ant ecology. Oxford University Press, Oxford, pp 38–58CrossRefGoogle Scholar
  23. Giraudel JL, Lek S (2001) A comparison of self-organizing map algorithm and some conventional statistical methods for ecological community ordination. Ecol Model 146:329–339CrossRefGoogle Scholar
  24. Glaser F (2006) Biogeography, diversity and vertical distribution of ants (Hymenoptera: Formicidae) in Vorarlberg, Austria. Myrmecol News 8:263–270Google Scholar
  25. Gómez C, Casellas D, Oliveras J, Bas JM (2003) Structure of ground-foraging ant assemblages in relation to land-use change in the northwestern Mediterranean region. Biodiversity Conserv 12:2135–2146CrossRefGoogle Scholar
  26. Groc S, Delabie JHC, Céréghino R, Orivel J, Jaladeau F, Grangier J, Mariano CSF, Dejean A (2007) Ant species diversity in the “Grands Causses” (Aveyron, France): in search of sampling methods adapted to temperate climates. C R Biol 330:913–922PubMedCrossRefGoogle Scholar
  27. Heinze J (1992) Life-histories of sub-arctic ants. Arctic 46:354–358Google Scholar
  28. Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Clim 25:1965–1978CrossRefGoogle Scholar
  29. Hoffmann BD, Andersen AN (2003) Responses of ants to disturbance in Australia, with particular reference to functional groups. Austral Ecol 28:444–464CrossRefGoogle Scholar
  30. Hopton ME, Mayer AL (2006) Using self-organizing maps to explore patterns in species richness and protection. Biodiversity Conserv 15:4477–4494CrossRefGoogle Scholar
  31. Kalif KAB, Azevedo-Ramos C, Moutinho P, Malcher SAO (2001) The effect of logging on the ground-foraging ant community in Eastern Amazonia. Stud Neotrop Fauna Environ 36:215–219CrossRefGoogle Scholar
  32. Kaspari M, Weiser MD (1999) The size grain hypothesis and interspecific scaling in ants. Funct Ecol 13:530–538CrossRefGoogle Scholar
  33. Kaspari M, Ward PS, Yuan M (2004) Energy gradients and the geographic distribution of local ant diversity. Oecologia 140:407–413PubMedCrossRefGoogle Scholar
  34. Kohonen T (2001) Self-organizing maps, 3rd edn. Springer, BerlinCrossRefGoogle Scholar
  35. Körner C (2007) The use of altitude in ecological research. Trends Ecol Evol 22:569–574PubMedCrossRefGoogle Scholar
  36. Lassau SA, Hochuli DF (2004) Effects of habitat complexity on ant assemblages. Ecography 27:157–164CrossRefGoogle Scholar
  37. Lassau SA, Cassis G, Flemons PKJ, Wilkie L, Hochuli DF (2005) Using high-resolution multi-spectral imagery to estimate habitat complexity in open-canopy forests: can we predict ant community patterns? Ecography 28:495–504CrossRefGoogle Scholar
  38. Lek S, Guégan JF (2000) Artificial neuronal networks: application to ecology and evolution. Springer, BerlinCrossRefGoogle Scholar
  39. Lessard JP, Dunn RR, Parker CR, Sanders NJ (2007) Rarity and diversity in forest ant assemblages of the Great Smoky Mountain National Park. Southeast Nat 6:215–228CrossRefGoogle Scholar
  40. Lessard JP, Dunn RR, Sanders NJ (2009) Temperature-mediated coexistence in forest ant communities. Insectes Soc 56:149–156CrossRefGoogle Scholar
  41. Levin SA (1992) The problem of pattern and scale in ecology. Ecology 73:1943–1967CrossRefGoogle Scholar
  42. MacArthur RH, MacArthur JW (1961) On bird species diversity. Ecology 42:594–598CrossRefGoogle Scholar
  43. Maysov A, Kipyatkov VE (2009) Critical thermal minima, their spatial and temporal variation and response to hardening in Myrmica ants. Cryo Lett 30:29–40Google Scholar
  44. McCoy ED, Bell SS (1991) Habitat structure: the evolution and diversification of a complex topic. In: Bell SS, McCoy ED, Mushinsky HR (eds) Habitat structure: the physical arrangement of objects in space. Chapman & Hall, London, pp 3–27CrossRefGoogle Scholar
  45. Ninot JM, Carrillo E, Font X, Carreras J, Ferré A, Masalles RM, Soriano I, Vigo J (2007) Altitude zonation in the Pyrenees. A geobotanic interpretation. Phytocoenologia 37:371–398CrossRefGoogle Scholar
  46. Park YS, Céréghino R, Compin A, Lek S (2003) Applications of artificial neural networks for patterning and predicting aquatic insect species richness in running waters. Ecol Model 160:265–280CrossRefGoogle Scholar
  47. Parr CL, Andersen AN (2008) Fire resilience of ant assemblages in long unburnt savanna of northern Australia. Austral Ecol 33:830–838CrossRefGoogle Scholar
  48. Pfeiffer M, Chimedregzen L, Ulykpan K (2003) Community organisation and species richness of ants (Hymenoptera/Formicidae) in Mongolia along an ecological gradient from Steppe to Gobi desert. J Biogeogr 30:1921–1935CrossRefGoogle Scholar
  49. Pianka ER (1986) Ecological phenomena in evolutionary perspective. In: Polunin N (ed) Ecosystem theory and application. Wiley, London, pp 325–336Google Scholar
  50. Radchenko AG, Elmes GW (2010) Myrmica ants (Hymenoptera: Formicidae) of the Old World. Natura Optima dux Foundation, WarsawGoogle Scholar
  51. Risser PG (1995) The status of the science examining ecotones. Bioscience 45:318–325CrossRefGoogle Scholar
  52. Roig X, Espadaler X (2010) Propuesta de grupos funcionales de hormigas para la Península Ibérica, y su uso como bioindicadores. Iberomyrmex 2:28–29Google Scholar
  53. Rosenzweig ML (1995) Species diversity in space and time. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  54. R Development Core Team (2011). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, http://www.R-project.org/
  55. Sanders NJ, Lessard JP, Dunn RR, Fitzpatrick MC (2007) Temperature, but not productivity or geometry, predicts elevational diversity gradients in ants across spatial grains. Global Ecol Biogeogr 16:640–649CrossRefGoogle Scholar
  56. Sanders NJ, Dunn RR, Fitzpatrick MC, Carlton CE, Pogue MR, Parker CR, Simons TR (2010) A diversity of elevational diversity gradients. In: Spehn EM, Körner C (eds) Data mining for global trends in mountain biodiversity. CRC Press, Boca Raton, pp 75–87Google Scholar
  57. Savolainen R, Vepsäläinen K (1988) A competition hierarchy among boreal ants: impact on resource partitioning and community structure. Oikos 51:135–155CrossRefGoogle Scholar
  58. Seifert B (2007) Die Ameisen Mittel und Nordeuropas. Lutra verlagGoogle Scholar
  59. Siegel S, Castellan NJ (1988) Nonparametric statistics for the behavioral sciences, 2nd edn. McGraw-Hill Humanities/Social Sciences/Languages, New YorkGoogle Scholar
  60. Stephens SS, Wagner MR (2006) Using ground foraging ant (Hymenoptera: Formicidae) functional groups as bioindicators of forest health in northern Arizona ponderosa pine forests. Environ Entomol 35:937–949CrossRefGoogle Scholar
  61. Tews J, Brose U, Grimm V, Tielborger K, Wichmann MC, Schwager M, Jeltsch F (2004) Animal species diversity driven by habitat heterogeneity/diversity: the importance of keystone structures. J Biogeogr 31:79–92CrossRefGoogle Scholar
  62. Turner MG, Gardner RH, O’Neill RV (2001) Landscape ecology in theory and practice. Springer, New YorkGoogle Scholar
  63. Vasconcelos HL, Vilhena JMS, Magnusson WE, Albernaz ALKM (2006) Long-term effects of forest fragmentation on Amazonian ant communities. J Biogeogr 33:1348–1356CrossRefGoogle Scholar
  64. Vesanto J, Alhoniemi E, Himberg J, Kiviluoto K, Parviainen J (1999) Self-organizing map for data mining in matlab: the SOM toolbox. SNE 25:54Google Scholar
  65. Vesanto J, Himberg J, Alhoniemi E, Parhankangas J (2000) SOM Toolbox for Matlab 5. Technical Report A57, Neural Networks Research Centre, Helsinki University of Technology, HelsinkiGoogle Scholar
  66. Wiens JA (1989) Spatial scaling in ecology. Funct Ecol 3:385–397CrossRefGoogle Scholar
  67. Zuur AF, Ieno EN, Walker N, Saveliev AA, Smith GM (2009) Mixed effects models and extensions in ecology with R. Springer, New YorkCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Abel Bernadou
    • 1
    • 5
  • Régis Céréghino
    • 2
  • Hugues Barcet
    • 3
  • Maud Combe
    • 1
  • Xavier Espadaler
    • 4
  • Vincent Fourcassié
    • 1
  1. 1.Centre de Recherches sur la Cognition Animale, UPS, CNRSUniversité de ToulouseToulouse cedex 9France
  2. 2.EcoLabUniversité Paul SabatierToulouse cedex 4France
  3. 3.UMR 5602 CNRS, Maison de la Recherche du Mirail, GeodeUniversité Toulouse II-Le MirailToulouseFrance
  4. 4.Departament de Biologia Animal, de Biologia Vegetal i d’Ecologia, Facultat de CiènciesUniversitat Autònoma de BarcelonaBellaterraSpain
  5. 5.Evolution, Behaviour & Genetics—Biology IUniversity of RegensburgRegensburgGermany

Personalised recommendations