Skip to main content

Feedbacks between vegetation pattern and resource loss dramatically decrease ecosystem resilience and restoration potential in a simple dryland model

Abstract

Conceptual frameworks of dryland degradation commonly include ecohydrological feedbacks between landscape spatial organization and resource loss, so that decreasing cover and size of vegetation patches result in higher water and soil losses, which lead to further vegetation loss. However, the impacts of these feedbacks on dryland dynamics in response to external stress have barely been tested. Using a spatially-explicit model, we represented feedbacks between vegetation pattern and landscape resource loss by establishing a negative dependence of plant establishment on the connectivity of runoff-source areas (e.g., bare soils). We assessed the impact of various feedback strengths on the response of dryland ecosystems to changing external conditions. In general, for a given external pressure, these connectivity-mediated feedbacks decrease vegetation cover at equilibrium, which indicates a decrease in ecosystem resistance. Along a gradient of gradual increase of environmental pressure (e.g., aridity), the connectivity-mediated feedbacks decrease the amount of pressure required to cause a critical shift to a degraded state (ecosystem resilience). If environmental conditions improve, these feedbacks increase the pressure release needed to achieve the ecosystem recovery (restoration potential). The impact of these feedbacks on dryland response to external stress is markedly non-linear, which relies on the non-linear negative relationship between bare-soil connectivity and vegetation cover. Modelling studies on dryland vegetation dynamics not accounting for the connectivity-mediated feedbacks studied here may overestimate the resistance, resilience and restoration potential of drylands in response to environmental and human pressures. Our results also suggest that changes in vegetation pattern and associated hydrological connectivity may be more informative early-warning indicators of dryland degradation than changes in vegetation cover.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Abrahams AD, Parsons AJ, Wainwright J (1995) Effects of vegetation change on interrill runoff and erosion, Walnut-Gulch, southern Arizona. Geomorphology 13:37–48

    Article  Google Scholar 

  • Aguiar MR, Sala OE (1999) Patch structure, dynamics and implications for the functioning of arid ecosystems. Trends Ecol Evol 14:273–277

    PubMed  Article  Google Scholar 

  • Allen C (2007) Interactions across spatial scales among forest dieback, fire, and erosion in northern New Mexico landscapes. Ecosystems 10(5):797–808

    Article  Google Scholar 

  • Bautista S, Mayor AG, Bourakhouadar J, Bellot J (2007) Plant spatial pattern predicts hillslope runoff and erosion in a semiarid Mediterranean landscape. Ecosystems 10(6):987–998

    Article  Google Scholar 

  • Bestelmeyer BT (2006) Threshold concepts and their use in rangeland management and restoration: the good, the bad, and the insidious. Restor Ecol 14:325–329

    Article  Google Scholar 

  • Bracken LJ, Croke J (2007) The concept of hydrological connectivity and its contribution to understanding runoff-dominated geomorphic systems. Hydrol Process 21:1749–1763

    Article  Google Scholar 

  • Brandt CJ, Thornes JB (1996) Mediterranean desertification and land use. Wiley, Chichester

    Google Scholar 

  • Breshears DD, Cobb NS, Rich PM, Price KP, Allen CD, Balice RG, Romme WH, Kastens JH, Floyd ML, Belnap J, Anderson JJ, Myers OB, Meyer CW (2005) Regional vegetation die- off in response to global-change- type drought. Proc Natl Acad Sci 102(42):15144–15148

    Google Scholar 

  • Browning DM, Duniway MC, Laliberte AS, Rango A (2012) Hierarchical analysis of vegetation dynamics over 71 years: soil-rainfall interactions in a Chihuahuan Desert ecosystem. Ecol Appl 22(3):909–926

    PubMed  Article  Google Scholar 

  • Cammeraat LH, Imeson AC (1999) The evolution and significance of soil-vegetation patterns following land abandonment and fire in Spain. Catena 37:107–127

    Article  Google Scholar 

  • Dakos V, Kéfi S, Rietkerk M, van Nes EH, Scheffer M (2011) Slowing down in spatially patterned ecosystems at the brink of collapse. Am Nat 177:E153–E166

    PubMed  Article  Google Scholar 

  • Dakos V, Van Nes EH, D’odorico P, Scheffer M (2012) Robustness of variance and autocorrelation as indicators of critical slowing down. Ecology 93(2):264–271

    PubMed  Article  Google Scholar 

  • Davenport DW, Breshears DD, Wilcox BP, Allen CD (1998) Viewpoint: sustainability of piñon-juniper ecosystems—a unifying perspective of soil erosion thresholds. J Rangeland Manage 51:231–240

    Article  Google Scholar 

  • Deblauwe V, Barbier N, Couteron P, Lejeune O, Bogaert J (2008) The global biogeography of semi-arid periodic vegetation patterns. Glob Ecol Biogeogr 17:715–723

    Article  Google Scholar 

  • Dunkerley DL, Brown KJ (1995) Runoff and runon areas in a patterned chenopod shrubland, arid western New South Wales, Australia: Characteristics and origin. J Arid Environ 30:41–55

    Article  Google Scholar 

  • Elwell HA, Stocking MA (1976) Vegetal cover to estimate soil erosion hazard in Rhodesia. Geoderma 15:61–70

    Article  Google Scholar 

  • Foley JA, Coe MT, Scheffer M, Wang G (2003) Regime shifts in the Sahara and Sahel: interactions between ecological and climatic systems in Northern Africa

  • Francis CF, Thornes JB (1990) Runoff hydrographs from three Mediterranean vegetations cover types. In: Thornes JB (ed) Vegetation and erosion, processes and environments. Wiley, Chichester, pp 363–384

    Google Scholar 

  • Franz TE, Caylor KK, King EG, Nordbotten J, Celia MA, Rodriguez-Iturbe I (2012) An ecohydrological approach to predicting hillslope-scale vegetation patterns in dryland ecosystems. Water Resour Res. doi:10.1029/2011WR010524

    Google Scholar 

  • Gao Y, Zhong B, Yue H, Wu B, Cao S (2011) A degradation threshold for irreversible loss of soil productivity: a long-term case study in China. J Appl Ecol 48:1145–1154

    Article  CAS  Google Scholar 

  • García-Fayos P, Bochet E, Cerdà A (2010) Seed removal susceptibility through soil erosion shapes vegetation composition. Plant Soil 334:289–297

    Article  Google Scholar 

  • Helldén U (2008) A coupled human-environment model for desertification simulation and impact Studies. Glob Planet Change 64:158–168

    Article  Google Scholar 

  • Hillerislambers R, Rietkerk M, van den Bosch F, Prins HHT, de Kroon H (2001) Vegetation pattern formation in semi-arid grazing systems. Ecology 82(1):50–61

    Article  Google Scholar 

  • Holling CS (1973) Resilience and stability of ecological systems. Annu Rev Ecol Syst 4:1–23

    Article  Google Scholar 

  • Holm AM, Loneragan WA, Adams MA (2002) Do variations on a model of landscape function assist in interpreting the growth response of vegetation to rainfall in arid environments? J Arid Environ 50(1):23–52

    Article  Google Scholar 

  • Kéfi S, Rietkerk M, van Baalen M, Loreau M (2007a) Local facilitation, bistability and transitions in arid ecosystems. Theor Popul Biol 71:367–379

    PubMed  Article  Google Scholar 

  • Kéfi S, Rietkerk M, Alados CL, Pueyo Y, Papanastasis VP, ElAich A, de Ruiter PC (2007b) Spatial vegetation patterns and imminent desertification in Mediterranean arid ecosystems. Nature 449:213–217

    PubMed  Article  Google Scholar 

  • Kéfi S, Eppinga MB, de Ruiter PC, Rietkerk M (2010) Bistability and regular spatial patterns in arid ecosystems. Theor Ecol 3(4):257–269

    Article  Google Scholar 

  • Kéfi S, Rietkerk M, Roy M, Franc A, de Ruiter PC, Pascual M (2011) Robust scaling in ecosystems and the meltdown of patch size distributions before extinction. Ecol Lett 14:29–35

    PubMed  Article  Google Scholar 

  • King EG, Franz TE, Caylor KK (2011) Ecohydrological interactions in a two-phase mosaic dryland: implications for regime shifts, resilience, and restoration. Ecohydrology 5(6):733–745

    Article  Google Scholar 

  • Lindegren M, Dakos V, Gröger JP, Gårdmark A, Kornilovs G, Otto SA, Möllmann C (2012) Early detection of ecosystem regime shifts: a multiple method evaluation for management application. PLoS ONE 7(7):e38410. doi:10.1371/journal.pone.0038410

    PubMed  Article  CAS  Google Scholar 

  • Ludwig JA, Tongway DJ (1995) Spatial organisation of landscapes and its function in semi-arid woodlands, Australia. Landscape Ecol 10:51–63

    Article  Google Scholar 

  • Ludwig JA, Tongway D, Freudenberger D, Noble J, Hodgkinson K (eds) (1997) Landscape ecology function and management: principles from Australia’s rangelands. Melbourne (Australia), CSIRO

  • Ludwig JA, Bastin GN, Chewings VH, Eagerc RW, Liedloff AC (2007) Leakiness: a new index for monitoring the health of arid and semiarid landscapes using remotely sensed vegetation cover and elevation data. Ecol Ind 7(2):442–454

    Article  Google Scholar 

  • Maestre FT, Escudero A (2009) Is the patch size distribution of vegetation a suitable indicator of desertification processes? Ecology 90(7):1729–1735

    PubMed  Article  Google Scholar 

  • Manor A, Shnerb NM (2008) Facilitation, competition, and vegetation patchiness: from scale free distribution to patterns. J Theor Biol 253(4):838–842

    PubMed  Article  Google Scholar 

  • Mayor AG, Bautista S, Small EE, Dixon M, Bellot J (2008) Measurement of the connectivity of runoff source areas as determined by vegetation pattern and topography. A tool for assessing potential water and soil losses in drylands. Water Resour Res 44:W10423

    Article  Google Scholar 

  • Mayor AG, Bautista S, Bellot J (2009) Factors and interactions controlling infiltration, runoff, and soil loss at the microscale in a patchy Mediterranean semiarid landscape. Earth Surf Process Landf 34:1702–1711

    Article  CAS  Google Scholar 

  • Mayor AG, Bautista S, Bellot J (2011) Scale-dependent variation in runoff and sediment yield in a semiarid Mediterranean catchment. J Hydrol 397:128–135

    Article  Google Scholar 

  • McIvor JG, Ash AJ, Cook GD (1995) Land condition in the tropical tallgrass pasture lands. 1. Effects on herbage production. Rangeland J 17(1):69–85

    Article  Google Scholar 

  • Moreno-de las Heras M, Saco PM, Willgoose GR, Tongway DJ (2011). Assessing landscape structure and pattern fragmentation in semiarid ecosystems using patch-size distributions. Ecol Appl 21(7):2793–2805

    Google Scholar 

  • Muñoz-Robles C, Tighe M, Reid N, Frazier P, Briggs SV, Wilson B (2011) A two-step up-scaling method for mapping runoff and sediment production from pasture and woody encroachment on semi-arid hillslopes. Ecohydrol. doi:10.1002/eco.283

    Google Scholar 

  • Okin GS, Parsons AJ, Wainwright J, Herrick JE, Bestelmeyer BT, Peters DC (2009) Do changes in connectivity explain desertification? Bioscience 59(3):237–244

    Article  Google Scholar 

  • Peters DC, Pielke RA, Bestelmeyer BT, Allen CD, Munson-McGee S, Havstad KM, Mooney HA (2004) Cross-scale interactions, nonlinearities, and forecasting catastrophic events. Proc Natl Acad Sci USA 101(42):15130–15135

    PubMed  Article  CAS  Google Scholar 

  • Puigdefábregas J (2005) The role of vegetation patterns in structuring runoff and sediment fluxes in drylands. Earth Surf Proc Land 30:133–147

    Article  Google Scholar 

  • Puigdefábregas J, Solé A, Gutiérrez L, Del Barrio G, Boer MM (1999) Scales and processes of water and sediment redistribution in drylands: results from the Rambla Honda field site in Southeast Spain. Earth-Sci Rev 48:39–70

    Article  Google Scholar 

  • Ravi S, Breshears DD, Huxman TE, D’Odorico P (2010) Land degradation in drylands: Interactions among hydrologic–aeolian erosion and vegetation dynamics 116(3–4):236–245

  • Reid KD, Wilcox B, Breshears D, MacDonald L (1999) Runoff and erosion in a piñon-juniper woodland: influence of vegetation patches. Soil Sci Soc Am J 63:1869–1879

    Article  CAS  Google Scholar 

  • Rietkerk M, van de Koppel J (1997) Alternate stable states and threshold effects in semi-arid grazing. Oikos 79(1):69–76

    Article  Google Scholar 

  • Rietkerk M, Boerlijst MC, van Langevelde F, HilleRisLambers R, van de Koppel J, Kumar L, Prins HHT, de Roos AM (2002) Self-organization of vegetation in arid ecosystems. Am Nat 160(4):524–530

    PubMed  Article  Google Scholar 

  • Rietkerk M, Dekker SC, de Ruiter PC, van de Koppel J (2004) Self-organized patchiness and catastrophic shifts in ecosystems. Science 305:1926–1929

    PubMed  Article  CAS  Google Scholar 

  • Moreno-de las Heras M, Saco PM, Willgoose GR, Tongway DJ (2012). Variations in hydrological connectivity of Australian semiarid landscapes indicate abrupt changes in rainfall-use efficiency of vegetation. J Geophys Res Biogeosci 117. doi:10.1029/2011JG001839

  • Scanlon TM, Caylor KK, Levin SA, Rodriguez-Iturbe I (2007) Positive feedbacks promote power-law clustering of Kalahari vegetation. Nature 449:209–212

    PubMed  Article  CAS  Google Scholar 

  • Scheffer M, Bascompte J, Brock WA, Brovkin V, Carpenter SR, Dakos V, Held H, van Nes EH, Rietkerk M, Sugihara G (2009) Early-warning signals for critical transitions. Nature 461:53–59

    PubMed  Article  CAS  Google Scholar 

  • Schröter D, Cramer W, Leemans R, Prentice IC, Araújo MB, Arnell NW, Bondeau A, Bugmann H, Carter TR, Gracia CA, de la Vega-Leinert AC, Erhard M, Ewert F, Glendining M, House JI, Kankaanpää S, Klein RJT, Lavorel S, Lindner M, Metzger MJ, Meyer J, Mitchell TD, Reginster I, Rounsevell M, Sabaté S, Sitch S, Smith B, Smith J, Smith P, Sykes MT, Thonicke K, Thuiller W, Tuck G, Zaehle S, Zierl B (2005) Ecosystem service supply and vulnerability to global change in Europe. Science 310:1333–1337

    PubMed  Article  Google Scholar 

  • Turnbull L, Wainwright J, Brazier RE (2010) Changes in hydrology and erosion over a transition from grassland to shrubland. Hydrol Process 24(4):393–414

    Google Scholar 

  • Urgeghe AM, Breshears DD, Martens SN, Beeson PC (2010) Redistribution of runoff among vegetation patch types: on ecohydrological optimality of herbaceous capture of run-on. Rangeland Ecol Manage 63(5):497–504

    Article  Google Scholar 

  • von Hardenberg J, Meron E, Shachak M, Zarmi Y (2001) Diversity of vegetation patterns and desertification. Phys Rev Lett 87:198101

    Article  Google Scholar 

  • von Hardenberg J, Kletter AY, Yizhaq H, Nathan J, Meron E (2010) Periodic versus scale-free patterns in dryland vegetation. Proc R Soc 277:1771–1776

    Article  Google Scholar 

  • Wilcox BP, Breshears DD, Allen CD (2003) Ecohydrology of a resource-conserving semiarid woodland: effects of scale and disturbance. Ecol Monogr 73:223–239

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the research projects PATTERN (AGCL2008/-05532-C02-01/FOR) and FEEDBACK (CGL2011-30515-C02-01) funded by the Spanish Ministry of Innovation and Science, the EC-funded projects PRACTICE (GA226818) and CASCADE (GA283068), and the project RESINEE funded by the ERA-Net on Complexity. AGM was supported by a postdoctoral contract (APOSTD/2011/005) from the Valencia Regional Government (Generalitat Valenciana), Spain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ángeles G. Mayor.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Mayor, Á.G., Kéfi, S., Bautista, S. et al. Feedbacks between vegetation pattern and resource loss dramatically decrease ecosystem resilience and restoration potential in a simple dryland model. Landscape Ecol 28, 931–942 (2013). https://doi.org/10.1007/s10980-013-9870-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10980-013-9870-4

Keywords

  • Resource-leakiness feedbacks
  • Vegetation spatial pattern
  • Hydrological connectivity
  • Desertification
  • Resilience
  • Restoration potential
  • Dryland ecosystems