Skip to main content

Modeling landscape structure response across a gradient of land cover intensity

Abstract

Quantitative analyses in landscape ecology have traditionally been dominated by the patch-mosaic concept in which landscapes are modeled as a mosaic of discrete patches. This model is useful for analyzing categorical data but cannot sufficiently account for the spatial heterogeneity present in continuous landscapes. Sub-pixel remote sensing classifications offer a potential data source for capturing continuous spatial heterogeneity but lack discrete land cover classes and therefore cannot be analyzed using standard landscape metric tools. This research introduces the threshold gradient method to allow transformation of continuous sub-pixel classifications into a series of discrete maps based on land cover proportion (i.e., intensity) that can be analyzed using landscape metric tools. Sub-pixel data are reclassified at multiple thresholds along a land cover continuum and landscape metrics are computed for each map. Metrics are plotted in response to intensity and these ‘scalograms’ are mathematically modeled using curve fitting techniques to allow determination of critical land cover thresholds (e.g., inflection points) where considerable landscape changes are occurring. Results show that critical land cover intensities vary between metrics, and the approach can generate increased ecological information not available with other landscape characterization methods.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  • Arnot C, Fisher PF, Wadsworth R, Wellens J (2004) Landscape metrics with ecotones: pattern under uncertainty. Landscape Ecol 19:181–195

    Article  Google Scholar 

  • Bekker MF, Clark JT, Jackson MW (2009) Landscape metrics indicate differences in patterns and dominant controls of ribbon forests in the Rocky Mountains, USA. Appl Veg Sci 12:237–249

    Article  Google Scholar 

  • Bongers F, Poorter L, Van Rompaey R, Parren M (1999) Distribution of twelve moist forest canopy tree species in Liberia and Côte d’Ivoire: response curves to a climatic gradient. J Veg Sci 10:371–382

    Article  Google Scholar 

  • Burger O, Todd L (2006) Grain, extent, and intensity: the components of scale in archaeological survey. In: Lock G, Molyneaux (eds) Confronting scale in archaeology: issues in theory and practice. Springer, New York, pp 235–256

  • Burger O, Todd L, Burnett P, Stohlgren TJ, Stephens D (2004) Multi-scale and nested-intensity sampling techniques for archaeological survey. J Field Archaeol 29(3/4):409–422

    Google Scholar 

  • Canty MJ, Nielsen AA (2008) Automatic radiometric normalization of multitemporal satellite imagery with the iteratively re-weighted MAD transformation. Remote Sens Environ 112(3):1025–1036

    Article  Google Scholar 

  • Chuvieco E (1999) Measuring changes in landscape pattern from satellite images: short-term effects of fire on spatial diversity. Int J Remote Sens 20:2331–2346

    Article  Google Scholar 

  • Cohen J (1960) A coefficient of agreement for nominal scales. Educ Psychol Meas 20:37–46

    Article  Google Scholar 

  • Collins W (1978) Remote sensing of crop type and maturity. Photogramm Eng Remote Sens 44:43–55

    Google Scholar 

  • Cracknell A (1998) Synergy in remote sensing—what’s in a pixel? Int J Remote Sens 19:2025–2047

    Article  Google Scholar 

  • Curran PJ, Dungan JL, Gholz HL (1990) Exploring the relationship between reflectance red edge and chlorophyll content in slash pine. Tree Physiol 7:33–38

    Article  PubMed  CAS  Google Scholar 

  • DiTomaso JM (1998) Impact, biology, and ecology of saltcedar (Tamarix spp.) in the Southwestern United States. Weed Technol 12(2):326–336

    Google Scholar 

  • Dudley TL, Deloach CJ (2004) Saltcedar (Tamarix spp.), endangered species, and biological weed control: can they mix? Weed Technol 18:1542–1551

    Article  Google Scholar 

  • Everitt JH, Escobar DE, Alaniz MA, Davis MR, Richerson JV (1996) Using spatial information technologies to map Chinese tamarisk (Tamarix chinensis) infestations. Weed Sci 44(1):194–201

    CAS  Google Scholar 

  • Fang S, Gertner G, Wang G, Anderson A (2006) The impact of misclassification in land use maps in the prediction of landscape dynamics. Landscape Ecol 21:233–242

    Article  Google Scholar 

  • Ficetola G, Denoël M (2009) Ecological thresholds: an assessment of methods to identify abrupt changes in species–habitat relationships. Ecography 32:1075–1084

    Article  Google Scholar 

  • Fischer J, Lindenmayer DB (2006) Beyond fragmentation: the continuum model for fauna research and conservation in human-modified landscapes. Oikos 112:473–480

    Article  Google Scholar 

  • Fischer J, Lindenmayer DB (2007) Landscape modification and habitat fragmentation: a synthesis. Global Ecol Biogeogr 16(3):265–280

    Article  Google Scholar 

  • Fisher P (1997) The pixel: a snare and a delusion. Int J Remote Sens 18(3):679–685

    Google Scholar 

  • Foody GM (1998) Sharpening fuzzy classification output to refine the representation of sub-pixel land cover distribution. Int J Remote Sens 19(13):2593–2599

    Article  Google Scholar 

  • Foody GM (2002) Status of land cover classification accuracy assessment. Remote Sens Environ 80:185–201

    Article  Google Scholar 

  • Forman RTT (1995) Land mosaics: the ecology of landscapes and regions. Cambridge University Press, Cambridge

    Google Scholar 

  • Frazier AE, Wang L (2011) Evaluation of soft classifications for characterizing spatial patterns of invasive species. Remote Sens Environ 115:1997–2007

    Article  Google Scholar 

  • Hansen MJ, Franklin SE, Woudsma CG, Peterson M (2001) Caribou habitat mapping and fragmentation analysis using Landsat TM, and GIS data in the North Columbia Mountains, British Columbia, Canada. Remote Sens Environ 77:50–65

    Article  Google Scholar 

  • Heikkinen J, Mäkipää R (2010) Testing hypotheses on shape and distribution of ecological response curves. Ecol Model 221:388–399

    Article  CAS  Google Scholar 

  • Hufkens K, Ceulemans R, Scheunders P (2008) Estimating the ecotone width in patchy ecotones using a sigmoid wave approach. Ecol Inform 3:97–104

    Article  Google Scholar 

  • Johnson AT (1991) Curvefitting. In: Weitkunat R (ed) Digital biosignal processing. Elsevier, New York, pp 309–336

  • Keshava N, Mustard JF (2002) Spectral unmixing. IEEE Signal Proc Mag 19:44–57

    Article  Google Scholar 

  • Li H, Wu J (2004) Use and misuse of landscape indices. Landscape Ecol 19:389–399

    Article  Google Scholar 

  • Li X, Du Y, Ling F, Wu S, Feng Q (2010) Using a sub-pixel mapping model to improve the accuracy of landscape pattern indices. Ecol Indic 11:1160–1170

    Article  Google Scholar 

  • Ludwig JA, Bastin GN, Eager RW, Karfs R, Ketner P, Pearce G (2000) Monitoring Australian rangeland sites using landscape function indicators and ground- and remote-based techniques. Environ Monit Assess 64:167–178

    Article  Google Scholar 

  • Manning AD, Lindenmayer DB, Nix HA (2004) Continua and umwelt: novel perspectives on viewing landscapes. Oikos 104:621–628

    Article  Google Scholar 

  • McGarigal K, Cushman SA (2005) The gradient concept of landscape structure. In: Wiens J, Moss M (eds) Issues and perspectives in landscape ecology. Cambridge University Press, Cambridge, pp 112–119

    Chapter  Google Scholar 

  • McGarigal K, Cushman SA, Neel MC, Ene E (2002) FRAGSTATS: spatial pattern analysis program for categorical maps. Computer software program produced by the authors at the University of Massachusetts, Amherst. http://www.umass.edu/landeco/research/fragstats/fragstats.html. Accessed 1 Dec 2012

  • McGarigal K, Tagil S, Cushman S (2009) Surface metrics: an alternative to patch metrics for the quantification of landscape structure. Landscape Ecol 24:433–450

    Article  Google Scholar 

  • McIntyre S, Barrett GW (1992) Habitat variegation, and alternative to fragmentation. Conserv Biol 6:146–147

    Article  Google Scholar 

  • McIntyre S, Hobbs RJ (1999) A framework for conceptualizing human effects on landscapes and its relevance to management and research models. Conserv Biol 13:1282–1292

    Article  Google Scholar 

  • Muradian R (2001) Ecological thresholds: a survey. Ecol Econ 38:7–24

    Article  Google Scholar 

  • Neel MC, McGarigal K, Cushman SA (2004) Behavior of class-level landscape metrics across gradients of class aggregation and area. Landscape Ecol 19:435–455

    Article  Google Scholar 

  • Peng J, Wang Y, Ye M, Wu J, Zhang Y (2007) Effects of land-use categorization on landscape metrics: a case study in urban landscape of Shenzhen, China. Int J Remote Sens 28:4877–4895

    Article  Google Scholar 

  • Pontius RG, Cheuk ML (2006) A generalized cross-tabulation matrix to compare soft-classified maps at multiple resolutions. Int J Geogr Inf Sci 20(1):1–30

    Article  Google Scholar 

  • Rashed T (2008) Remote sensing of within-class change in urban neighborhood structures. Comput Environ Urban 32:343–354

    Article  Google Scholar 

  • Roberts DA, Gardner M, Church R, Ustin S, Scheer G, Green RO (1998) Mapping chaparral in the Santa Monica mountains using multiple end member spectral mixture models. Remote Sens Environ 65:267–279

    Article  Google Scholar 

  • Saura S (2004) Effects of remote sensor spatial resolution and data aggregation on selected fragmentation indices. Landscape Ecol 19:197–209

    Article  Google Scholar 

  • Saura S, Castro S (2007) Scaling functions for landscape pattern metrics derived from remotely sensed data: are their subpixel estimates really accurate? Int J Photogramm 62:201–216

    Article  Google Scholar 

  • Seabrook L, McAlpine C, Fensham R (2006) Cattle, crops and clearing: regional drivers of landscape change in the Brigalow Belt, Queensland, Australia, 1840–2004. Landsc Urban Plan 78:373–385

    Article  Google Scholar 

  • Shao G, Wu J (2008) On the accuracy of landscape pattern analysis using remote sensing data. Landscape Ecol 23:505–511

    Article  Google Scholar 

  • Shen W, Jenerette D, Wu J, Gardner RH (2004) Evaluating empirical scaling relations of pattern metrics with simulated landscapes. Ecography 27:459–469

    Article  Google Scholar 

  • Silván-Cárdenas JL, Wang L (2008) Sub-pixel confusion-uncertainty matrix for assessing soft classifications. Remote Sens Environ 112(3):1081–1095

    Article  Google Scholar 

  • Silván-Cárdenas JL, Wang L (2010) Retrieval of subpixel Tamarix canopy cover from Landsat data along the forgotten river using linear and nonlinear spectral mixture models. Remote Sens Environ 114(8):1777–1790

    Article  Google Scholar 

  • Tang J, Wang L, Zhang S (2005) Investigating landscape pattern and its dynamics in Daqing, China. Int J Remote Sens 26:2259–2280

    Article  Google Scholar 

  • The Mathworks Inc. (2010) Matlab version R2010a. Natick, MA

  • Toms J, Lesperance M (2003) Piecewise regression: a tool for identifying ecological thresholds. Ecology 84(8):2034–2041

    Article  Google Scholar 

  • Turner MG, O’Neill RV, Gardner RH, Milne BT (1989) Effects of changing spatial scale on the analysis of landscape pattern. Landscape Ecol 3:153–162

    Article  Google Scholar 

  • Uuemaa E, Roosaare J, Mander U (2005) Scale dependence of landscape metrics and their indicatory value for nutrient and organic matter losses from catchments. Ecol Indic 5:350–369

    Article  Google Scholar 

  • Van de Voorde T, Jacquet W, Canters F (2011) Mapping form and function in urban areas: An approach based on urban metrics and continuous impervious surface data. Landsc Urban Plan 102:143–155

    Article  Google Scholar 

  • VanRiper C, Paxton KL, O’Brien C, Shafroth PB, McGrath LJ (2008) Rethinking avian response to Tamarix on the lower Colorado River: a threshold hypothesis. Restor Ecol 16(1):155–167

    Article  Google Scholar 

  • Walsh S, McCleary A, Mena C, Shao Y, Tuttle J, Gonzalez A (2008) QuickBird and hyperion data analysis of an invasive plant species in the. Galapagos Islands of Ecuador: implications for control and land use management. Remote Sens Environ 112(5):1927–1941

    Article  Google Scholar 

  • Wang F (1990) Fuzzy supervised classification of remote sensing images. IEEE Trans Geosci Remote Sens 28(2):194–201

    Article  Google Scholar 

  • Wang L, Frazier AE (2012) Advanced geospatial techniques for mapping and monitoring invasive species. In: Yang X, Li J (eds) Advances in mapping from aerospace imagery: techniques and applications. CRC Press, New York

    Google Scholar 

  • Wickham JD, O’Neill RV, Ritters KH, Wade TG, Jones KB (1997) Sensitivity of selected landscape pattern metrics to land-cover misclassification and differences in land-cover composition. Photogramm Eng Remote Sens 63(4):397–402

    Google Scholar 

  • Wu J (2004) Effects of changing scale on landscape pattern analysis: scaling relations. Landscape Ecol 19:125–138

    Article  Google Scholar 

  • Wu J, Hobbs R (2002) Key issues and research priorities in landscape ecology: an idiosyncratic synthesis. Landscape Ecol 17:355–365

    Article  Google Scholar 

  • Wu J, Shen W, Sun W, Tueller PT (2002) Empirical patterns of the effects of changing scale on landscape metrics. Landscape Ecol 17:761–782

    Article  Google Scholar 

  • Yu X, Ng C (2006) An integrated evaluation of landscape change using remote sensing and landscape metrics: a case study of Panyu, Guangzhou. Int J Remote Sens 27:1075–1092

    Article  CAS  Google Scholar 

  • Zavaleta E (2000) The economic value of controlling and invasive shrub. Ambio 29:462–467

    Google Scholar 

Download references

Acknowledgments

This study was partially supported by grants to Le Wang from the National Science Foundation (DEB-0810933 and BCS-0822489) and from the US Department of Agriculture CSREES Award 2004-38899-02181.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amy E. Frazier.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Frazier, A.E., Wang, L. Modeling landscape structure response across a gradient of land cover intensity. Landscape Ecol 28, 233–246 (2013). https://doi.org/10.1007/s10980-012-9839-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10980-012-9839-8

Keywords