Landscape Ecology

, Volume 28, Issue 1, pp 121–133 | Cite as

Matrix composition and corridor function for austral thrushes in a fragmented temperate forest

  • Pablo M. Vergara
  • Christian G. Pérez-Hernández
  • Ingo J. Hahn
  • Jaime E. Jiménez
Research Article


Although it is widely recognized that animal movement may be facilitated by corridors and hindered by the matrix, the influence of matrix composition on the use of corridors still remain poorly understood. We used translocation experiments and state-space models to assess if the movement response of the frugivorous bird, the austral thrush, to riparian forest strips varies depending on matrix composition (open pasture vs. eucalyptus plantation). In agricultural landscapes, the directions displayed by most birds when moving in the open pasture matrix were consistent with an edge-following behavior. Riparian strips also functioned as passive drift fences in agricultural landscapes, with strips being used as conduits for movements once birds entered into a riparian strip. Our results suggest that visual perception of riparian strips by birds is hampered by the complex habitat structure in the eucalyptus matrix and that the use of riparian strips as habitat is conditioned by the surrounding matrix.


Corridors Drift fence Edge-following behavior 



This study was supported by FONDECYT project 11080085. We thank Ignacio Orellana for his valuable help in data collection, and Forestal Mininco for granting us access to forest fragments in their property. The Editor and two anonymous reviewers made many suggestions that improved the quality of the manuscript.

Supplementary material

10980_2012_9821_MOESM1_ESM.doc (2.6 mb)
Supplementary material 1 (DOC 2622 kb)
10980_2012_9821_MOESM2_ESM.doc (41 kb)
Supplementary material 2 (DOC 41 kb)


  1. Armsworth PR, Roughgarden JE (2005) The impact of directed versus random movement on population dynamics and biodiversity patterns. Am Nat 165:449–465PubMedCrossRefGoogle Scholar
  2. Barton KA, Phillips BE, Morales JM, Travis JMJ (2009) The evolution of an ‘intelligent’ dispersal strategy: biased, correlated random walks on in patchy landscapes. Oikos 118:309–319CrossRefGoogle Scholar
  3. Batschelet E (1981) Circular Statistics in Biology. Mathematics in Biology. Academic Press, San FranciscoGoogle Scholar
  4. Baum KA, Haynes KJ, Dillemuth FP, Cronin JT (2004) The matrix enhances the effectiveness of corridors and stepping stones. Ecology 85:2671–2676CrossRefGoogle Scholar
  5. Bell WJ (1991) Searching behaviour: the behavioural ecology of finding resources. Chapman and Hall, LondonGoogle Scholar
  6. Bennett AF (1999) Linkages in the landscape. The role of corridors and connectivity in wildlife conservation. IUCN Publications, CambridgeGoogle Scholar
  7. Berggren A, Birath B, Kindvall O (2002) Effect of corridors and habitat edges on dispersal behaviour, movement rates, and movement angles in Roesel’s Bush-Cricket (Metrioptera roeseli). Conserv Biol 16:1562–1569CrossRefGoogle Scholar
  8. Breed GA, Jonsen ID, Bowen WD, Leonard ML, Myers RA (2009) Sex-specific, seasonal foraging tactics of adult grey seals (Halichoerus grypus) revealed by state-space analysis. Ecology 90:3209–3221PubMedCrossRefGoogle Scholar
  9. Castellon TD, Sieving KE (2006) An experimental test of matrix permeability and corridor use by an endemic understory bird. Conserv Biol 20:135–145PubMedCrossRefGoogle Scholar
  10. Davies ZG, Pullin AS (2007) Are hedgerows effective corridors between fragments of woodland habitat? An evidence-based approach. Landscape Ecol 22:333–351CrossRefGoogle Scholar
  11. Donoso C (1993) Bosques templados de Chile y Argentina: variación, estructura y dinámica. Editorial Universitaria, SantiagoGoogle Scholar
  12. Dramstad WE, Olson JK, Forman RTT (1996) Landscape ecology principles in landscape architecture and land-use planning. Island Press, Washington, D.C.Google Scholar
  13. Echeverría C, Coomes D, Newton A, Salas J, Rey JM, Lara A (2006) Rapid fragmentation and deforestation of Chilean temperate forests. Biol Conserv 130:481–494CrossRefGoogle Scholar
  14. Echeverría C, Newton AC, Lara A, Rey-Benayas JM, Coomes DA (2007) Impacts of forest fragmentation on species composition and forest structure in the temperate landscape of southern Chile. Glob Ecol Biogeogr 16:426–439CrossRefGoogle Scholar
  15. Fernandez-Juricic E, Erichsen JT, Kacelnik A (2004) Visual perception and social foraging in birds. Trends Ecol Evol 19:25–31PubMedCrossRefGoogle Scholar
  16. Forman RTT (1995) Land Mosaics: The ecology of landscapes and regions. Cambridge University Press, CambridgeGoogle Scholar
  17. Fried JH, Levey DJ, Hogsette JA (2005) Habitat corridors function as both drift fences and movement conduits for dispersing flies. Oecologia 143:645–651PubMedCrossRefGoogle Scholar
  18. Gillies CS, St. Clair CC (2008) Riparian corridors enhance movement of a forest specialist bird in fragmented tropical forest. Proc Natl Acad Sci USA 105:19774–19779PubMedCrossRefGoogle Scholar
  19. Graves TA, Farley S, Goldstein M, Servheen C (2007) Identification of functional corridors with movement characteristics of brown bears on the Kenai Peninsula, Alaska. Landscape Ecol 22:765–772CrossRefGoogle Scholar
  20. Haddad NM (1999) Corridor use predicted from behaviors at habitat boundaries. Am Nat 153:215–227CrossRefGoogle Scholar
  21. Haddad NM, Baum K (1999) An experimental test of corridor effects on butterfly densities. Ecol Appl 9:623–633CrossRefGoogle Scholar
  22. Hahn I, Römer U, Schlatter R (2005) Distribution, habitat use, and abundance patterns of land bird communities on the Juan Fernández islands, Chile. Ornitología Neotropical 16:371–385Google Scholar
  23. Heidinger IMM, Poethke HJ, Bonte D, Hein S (2009) The effect of translocation on movement behaviour–a test of the assumptions of behavioural studies. Behav Process 82:12–17CrossRefGoogle Scholar
  24. Hudgens BR, Haddad NM (2003) Predicting which species will benefit from corridors in fragmented landscapes from population growth models. Am Nat 161:808–820PubMedCrossRefGoogle Scholar
  25. Ibarra-Macias A, Robinson WD, Gaines MS (2011) Forest corridors facilitate movement of tropical forest birds after experimental translocations in a fragmented neotropical landscape in Mexico. J Trop Ecol 27:547–556CrossRefGoogle Scholar
  26. Jammalamadaka SR, SenGupta A (2001) Topics in Circular Statistics. World Scientific, SingaporeGoogle Scholar
  27. Jaña-Prado RC (2007) Seed rain of bird-dispersed species in riparian and upland forests in a rural landscape of Northern Chiloe Island. Chile. MSc. Thesis, Facultad de Ciencias, Universidad de Chile, SantiagoGoogle Scholar
  28. Jonsen ID, Myers RA, Flemming JM (2003) Meta-analysis of animal movement using state-space models. Ecology 84:3055–3063CrossRefGoogle Scholar
  29. Jonsen ID, Flemming JM, Myers RA (2005) Robust state-space modeling of animal movement data. Ecology 86:2874–2880CrossRefGoogle Scholar
  30. Kareiva P, Odell G (1987) Swarms of predators exhibit “preytaxis” if individual predators use area-restricted search. Am Nat 130:233–270CrossRefGoogle Scholar
  31. Kristan WB III (2006) Sources and expectations for hierarchical structure in bird-habitat associations. The Condor 108:5–12CrossRefGoogle Scholar
  32. Lawson AB (2009) Bayesian disease mapping: hierarchical modeling in spatial epidemiology. CRC Press, New YorkGoogle Scholar
  33. Levey DJ, Bolker BM, Tewksbury JJ, Sargent S, Haddad NM (2005) Effects of landscape corridors on seed dispersal by birds. Science 309:146–148PubMedCrossRefGoogle Scholar
  34. Levey DJ, Tewksbury JJ, Bolker BM (2008) Modelling long-distance seed dispersal in heterogeneous landscape. J Ecol 96:599–608CrossRefGoogle Scholar
  35. Lunn D (2008) WinBUGS code for the truncated normal distribution. Available from. Accessed June 2011
  36. Mceuen A (1993) The wildlife corridor controversy: a review. Endanger Species Update 10:1–7Google Scholar
  37. Morales JM, Haydon DT, Friar J, Holsinger KE, Fryxell JM (2004) Extracting more out of relocation data: building movement models as mixtures of random walks. Ecology 85:2436–2445CrossRefGoogle Scholar
  38. Morrison SA, Boyce WM (2008) Conserving connectivity: some lessons from mountain lions in southern California. Conserv Biol 23:275–285PubMedCrossRefGoogle Scholar
  39. Mueller T, Fagan W (2008) Search and navigation in dynamic environments–from individual behaviors to population distributions. Oikos 117:654–664CrossRefGoogle Scholar
  40. Naidoo R, Ricketts TH (2006) Mapping the economic costs and benefits of conservation. PLoS Biol 4:2153–2164CrossRefGoogle Scholar
  41. Nams VO (2011) Emergent properties of patch shapes affect edge permeability to animals. PLoS ONE 6:e21886PubMedCrossRefGoogle Scholar
  42. Nathan R, Getz WM, Revilla E, Holyoak M, Kadmon R, Saltz D, Smouse PE (2008) A movement ecology paradigm for unifying organismal movement research. Proc Natl Acad Sci USA 105:19052–19059PubMedCrossRefGoogle Scholar
  43. Ntzoufras I (2009) Bayesian modeling using WinBUGS. Wiley, HobokenCrossRefGoogle Scholar
  44. Öckinger E, Smith H (2008) Do corridors promote dispersal in grassland butterflies and other insects? Landscape Ecol 23:27–40CrossRefGoogle Scholar
  45. Patterson TA, Thomas L, Wilcox C, Ovaskainen O, Matthiopoulos J (2008) State-space models of individual animal movement. Trends Ecol Evol 23:87–94PubMedCrossRefGoogle Scholar
  46. Ricketts TH (2001) The matrix matters: effective isolation in fragmented landscapes. Am Nat 158:87–99PubMedCrossRefGoogle Scholar
  47. Schippers P, Grashof-Bokdam CJ, Verboom J, Baveco JM, Jochem R, Meeuwsen HAM, Van Adrichem MHC (2009) Sacrificing patches for linear habitat elements enhances metapopulation performance of woodland birds in fragmented landscapes. Landscape Ecol 24:1123–1133CrossRefGoogle Scholar
  48. Schtickzelle N, Joiris A, Van Dyck H, Baguette M (2007) Quantitative analysis of changes in movement behaviour within and outside habitat in a specialist butterfly. BMC Evol Biol 7:7CrossRefGoogle Scholar
  49. Schultz CB, Crone EE (2001) Edge-mediated dispersal behavior in a prairie butterfly. Ecology 82:1879–1892CrossRefGoogle Scholar
  50. Silva-Rodríguez EA, Ortega-Solís GR, Jiménez JE (2008) Descripción del ensamble de aves en un agroecosistema del sur de Chile. Boletín Chileno de Ornitología 14:81–91Google Scholar
  51. Simberloff D, Farr JA, Cox J, Mehlam DW (1992) Movement corridors: conservation bargains or poor investments? Conserv Biol 6:493–502CrossRefGoogle Scholar
  52. Soulé ME, Gilpin ME (1991) The theory of wildlife corridor capability. In: Saunders DA, Hobbs RJ (eds) Nature Conservation 2: the role of corridors. Surrey Beatty & Sons, New South Wales, pp 305–321Google Scholar
  53. Tewksbury JJ, Levey DJ, Haddad NM, Sargent S, Orrock JL, Weldon A (2002) Corridors affect plants, animals, and their interactions in fragmented landscapes. Proc Natl Acad Sci USA 99:12923–12926PubMedCrossRefGoogle Scholar
  54. Vergara PM (2011) Matrix-dependent corridor effectiveness and the abundance of forest birds in fragmented landscapes. Landscape Ecol 26:1085–1096CrossRefGoogle Scholar
  55. Vergara PM, Simonetti JA (2004) Avian responses to fragmentation of the Maulino forest in central Chile. Oryx 38:383–388CrossRefGoogle Scholar
  56. Vergara PM, Smith C, Delpiano CA, Orellana I, Gho D, Vasquez I (2010) Frugivory on Persea lingue in temperate Chilean forests: interactions between fruit availability and habitat fragmentation across multiple spatial scales. Oecologia 164:981–991PubMedCrossRefGoogle Scholar
  57. Walsh PD (1996) Area-restricted search and the scale dependence of patch quality discrimination. J Theor Biol 183:351–361CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Pablo M. Vergara
    • 1
  • Christian G. Pérez-Hernández
    • 2
  • Ingo J. Hahn
    • 3
  • Jaime E. Jiménez
    • 4
    • 5
  1. 1.Departamento de Gestión AgrariaUniversidad de Santiago de ChileSantiagoChile
  2. 2.Departamento de Ciencias Ambientales y Recursos Naturales RenovablesUniversidad de ChileSantiagoChile
  3. 3.Institute of Landscape EcologyUniversity of MünsterMünsterGermany
  4. 4.Department of Biological Sciences & Department of Philosophy and Religion StudiesUniversity of North TexasDentonUSA
  5. 5.Omora Ethnobotanical ParkUniversidad de MagallanesPuerto WilliamsChile

Personalised recommendations