Landscape Ecology

, Volume 28, Issue 2, pp 165–185 | Cite as

Population connectivity: recent advances and new perspectives

  • Johnathan T. KoolEmail author
  • Atte Moilanen
  • Eric A. Treml


Connectivity is a vital component of metapopulation and landscape ecology, influencing fundamental processes such as population dynamics, evolution, and community responses to climate change. Here, we review ongoing developments in connectivity science, providing perspectives on recent advances in identifying, quantifying, modelling and analysing connectivity, and highlight new applications for conservation. We also address ongoing challenges for connectivity research, explore opportunities for addressing them and highlight potential linkages with other fields of research. Continued development of connectivity science will provide insights into key aspects of ecology and the evolution of species, and will also contribute significantly towards achieving more effective conservation outcomes.


Dispersal Spatial ecology Review Tracking Population genetics Modeling Conservation Management 



J.K. would like to thank Bob Pressey and Program 6 (Conservation Planning) of the ARC Centre of Excellence for Coral Reef Studies and the Australian Institute of Marine Science for providing financial support for this work. He also thanks Stephanie Januchowski-Hartley, Tom Brewer, Claire Paris and Bill Laurance for their input on draft versions of the manuscript. Ideas developed during conversations with Hugo Harrison also contributed significantly to the population genetics section, and several key ideas were generated during discussions with Bob Warner, particularly regarding the importance of demographic effects. A.M. thanks the ERC grant StG 260393—GEDA and the Academy of Finland Centre of Excellence Programme 2012-2017 for support. Funding for E.T. was provided by Australian Research Council grant DP0878306, and a World Wildlife Fund Kathryn Fuller Science for Nature Postdoctoral Fellowship.


  1. Ahmad MA, Teredesai A (2006) Modeling spread of ideas in online social networks. In: Proceedings of the fifth Australasian conference on data mining and analystics, vol 61. Australian Computer Society, Inc., Sydney, pp 185–190Google Scholar
  2. Aiken CM, Navarrete SA (2011) Environmental fluctuations and asymmetrical dispersal: generalized stability theory for studying metapopulation persistence and marine protected areas. Mar Ecol Prog Ser 428:77–88CrossRefGoogle Scholar
  3. Allendorf FW, Hohenlohe PA, Luikart G (2010) Genomics and the future of conservation genetics. Nat Rev Genet 11(10):697–709PubMedCrossRefGoogle Scholar
  4. Allesina S, Pascual M (2009) Googling Food Webs: can an Eigenvector Measure Species’ Importance for Coextinctions? PLoS Comput Biol 5(9):e1000494PubMedCrossRefGoogle Scholar
  5. Almany GR, Berumen ML, Thorrold SR, Planes S, Jones GP (2007) Local Replenishment of Coral Reef Fish Populations in a Marine Reserve. Science 316(5825):742–744PubMedCrossRefGoogle Scholar
  6. Avise JC (2010) Perspective: conservation genetics enters the genomics era. Conserv Genet 11(2):665–669CrossRefGoogle Scholar
  7. Baguette M, Van Dyck H (2007) Landscape connectivity and animal behavior: functional grain as a key determinant for dispersal. Landscape Ecol 22(8):1117–1129CrossRefGoogle Scholar
  8. Balkenhol N, Gugerli F, Cushman S, Waits L, Coulon A, Arntzen J, Holderegger R, Wagner H (2009) Identifying future research needs in landscape genetics: where to from here? Landscape Ecol 24(4):455–463Google Scholar
  9. Ball IR, Possingham HP, Watts M (2009) Marxan and relatives: software for spatial conservation prioritisation. In: Moilanen A, Wilson KA, Possingham HP (eds) Spatial conservation prioritisation: quantitative methods and computational tools. Oxford University Press, Oxford, pp 185–195Google Scholar
  10. Beerli P, Palczewski M (2010) Unified framework to evaluate panmixia and migration direction among multiple sampling locations. Genetics 185(1):313–326PubMedCrossRefGoogle Scholar
  11. Berry O, Tocher MD, Sarre SD (2004) Can assignment tests measure dispersal? Mol Ecol 13(3):551–561PubMedCrossRefGoogle Scholar
  12. Berumen M, Walsh H, Raventos N, Planes S, Jones G, Starczak V, Thorrold S (2010) Otolith geochemistry does not reflect dispersal history of clownfish larvae. Coral Reefs 29(4):883–891Google Scholar
  13. Bode M, Bode L, Armsworth PR (2006) Larval dispersal reveals regional sources and sinks in the Great Barrier Reef. Mar Ecol Prog Ser 308:17–25CrossRefGoogle Scholar
  14. Bodin Ö, Crona BI (2009) The role of social networks in natural resource governance: what relational patterns make a difference? Glob Environ Change 19(3):366–374CrossRefGoogle Scholar
  15. Borgatti SP, Mehra A, Brass DJ, Labianca G (2009) Network analysis in the social sciences. Science 323(5916):892–895PubMedCrossRefGoogle Scholar
  16. Borgman C, Wallis J, Enyedy N (2007) Little science confronts the data deluge: habitat ecology, embedded sensor networks, and digital libraries. Int J Digit Libr 7(1):17–30CrossRefGoogle Scholar
  17. Broquet T, Petit EJ (2009) Molecular estimation of dispersal for ecology and population genetics. Ann Rev Ecol Syst 40(1):193–216Google Scholar
  18. Cantrell RS, Cosner C (2003) Spatial ecology via reaction-diffusion equations. Wiley, ChichesterGoogle Scholar
  19. Carroll C, Dunk JR, Moilanen A (2010) Optimizing resiliency of reserve networks to climate change: multispecies conservation planning in the Pacific Northwest, USA. Glob Change Biol 16(3):891–904CrossRefGoogle Scholar
  20. Caswell H (2001) Matrix population models: construction, analysis, and interpretation. Sinauer Associates, SunderlandGoogle Scholar
  21. Caswell H (2007) Sensitivity analysis of transient population dynamics. Ecol Lett 10(1):1–15PubMedCrossRefGoogle Scholar
  22. Cerdeira JO, Pinto LS, Cabeza M, Gaston KJ (2010) Species specific connectivity in reserve-network design using graphs. Biol Conserv 143(2):408–415CrossRefGoogle Scholar
  23. Chester CC (2006) Conservation across borders: biodiversity in an interdependent world. Island Press, Washington, DCGoogle Scholar
  24. Ciarleglio M, Wesley Barnes J, Sarkar S (2009) ConsNet: new software for the selection of conservation area networks with spatial and multi-criteria analyses. Ecography 32(2):205–209CrossRefGoogle Scholar
  25. Claudet J (2011) Marine protected areas: a multidisciplinary approach. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  26. Clauset A, Newman MEJ, Moore C (2004) Finding community structure in very large networks. Phys Rev E 70(6):066111CrossRefGoogle Scholar
  27. Cowen RK, Guigand CM (2008) In situ ichthyoplankton imaging system (ISIIS): system design and preliminary results. Limnol Oceanogr Methods 6:126–132CrossRefGoogle Scholar
  28. Cowen RK, Sponaugle S (2009) Larval dispersal and marine population connectivity. Annu Rev Mar Sci 1:443–466CrossRefGoogle Scholar
  29. Crooks KR, Sanjayan M (eds) (2006) Connectivity conservation. Cambridge University Press, CambridgeGoogle Scholar
  30. Cushman SA, McKelvey KS, Schwartz MK (2009) Use of empirically derived source-destination models to map regional conservation corridors (Utilización de Modelos Fuente-Destino Empíricamente Derivados para Cartografiar Corredores de Conservación Regionales). Conserv Biol 23(2):368–376PubMedCrossRefGoogle Scholar
  31. Dale MRT, Dixon P, Fortin M-J, Legendre P, Myers DE, Rosenberg MS (2002) Conceptual and mathematical relationships among methods for spatial analysis. Ecography 25(5):558–577CrossRefGoogle Scholar
  32. Donald PF, Evans AD (2006) Habitat connectivity and matrix restoration: the wider implications of agri-environment schemes. J Appl Ecol 43(2):209–218CrossRefGoogle Scholar
  33. Donnelly P (2008) Progress and challenges in genome-wide association studies in humans. Nature 456(7223):728–731PubMedCrossRefGoogle Scholar
  34. Douglas DH (1994) Least-cost path in GIS using an accumulated cost surface and slopelines, Cartographica. Int J Geogr Inf Geovisual 31(3):37–51Google Scholar
  35. Drielsma M, Ferrier S (2009) Rapid evaluation of metapopulation persistence in highly variegated landscapes. Biol Conserv 142(3):529–540CrossRefGoogle Scholar
  36. Duchesne P, Castric T, Bernatchez L (2005) pasos (parental allocation of singles in open systems): a computer program for individual parental allocation with missing parents. Mol Ecol Notes 5(3):701–704CrossRefGoogle Scholar
  37. Durbec M, Cavalli L, Grey J, Chappaz R, Nguyen B (2010) The use of stable isotopes to trace small-scale movements by small fish species. Hydrobiologia 641(1):23–31Google Scholar
  38. Elith J, Leathwick JR (2009) Species distribution models: ecological explanation and prediction across space and time. Annu Rev Ecol Evol Syst 40(1):677–697CrossRefGoogle Scholar
  39. Erös T, Olden J, Schick R, Schmera D, Fortin M-J (2012) Characterizing connectivity relationships in freshwaters using patch-based graphs. Landscape Ecol 27(2):303–317CrossRefGoogle Scholar
  40. Estrada E, Bodin Ö (2008) Using network centrality measures to manage landscape connectivity. Ecol Appl 18(7):1810–1825PubMedCrossRefGoogle Scholar
  41. Excoffier L, Heckel G (2006) Computer programs for population genetics data analysis: a survival guide. Nat Rev Genet 7(10):745–758PubMedCrossRefGoogle Scholar
  42. Faaborg J, Holmes RT, Anders AD, Bildstein KL, Dugger KM, Gauthreaux SA Jr, Heglund P, Hobson KA, Jahn AE, Johnson DH, Latta SC, Levey DJ, Marra PP, Merkord CL, Erica NOL, Rothstein SI, Sherry TW, Scott Sillett T, Thompson III FR, Warnock N (2010) Recent advances in understanding migration systems of New World land birds. Ecol Monogr 80(1):3–48Google Scholar
  43. Faubet P, Gaggiotti OE (2008) A new Bayesian method to identify the environmental factors that influence recent migration. Genetics 178(3):1491–1504PubMedCrossRefGoogle Scholar
  44. Ferreras P (2001) Landscape structure and asymmetrical inter-patch connectivity in a metapopulation of the endangered Iberian lynx. Biol Conserv 100(1):125–136CrossRefGoogle Scholar
  45. Figueira W, Crowder L (2006) Defining patch contribution in source-sink metapopulations: the importance of including dispersal and its relevance to marine systems. Popul Ecol 48(3):215–224CrossRefGoogle Scholar
  46. Fleming PJS, Tracey JP (eds) (2008) Aerial surveys of wildlife: theory and applications. CSIRO Publishing, CollingwoodGoogle Scholar
  47. Foster NL, Paris CB, Kool JT, Baums IB, Stevens JR, Sanchez JA, Bastidas C, Agudelo C, Bush P, Day O, Ferrari R, Gonzalez P, Gore S, Guppy R, McCartney M, McCoy C, Mendes J, Srinivasan A, Steiner S, Vermeij MJA, Weil E, Mumby PJ (2012) Connectivity of Caribbean coral populations: complementary insights from empirical and modelled gene flow. Mol Ecol 21(5):1143–1157Google Scholar
  48. Francesco Ficetola G, Bonin A (2011) Conserving adaptive genetic diversity in dynamic landscapes. Mol Ecol 20(8):1569–1571CrossRefGoogle Scholar
  49. Fujiwara M, Anderson K, Neubert M, Caswell H (2006) On the estimation of dispersal kernels from individual mark-recapture data. Environ Ecol Stat 13(2):183–197CrossRefGoogle Scholar
  50. Galpern P, Manseau M, Fall A (2011) Patch-based graphs of landscape connectivity: a guide to construction, analysis and application for conservation. Biol Conserv 144(1):44–55CrossRefGoogle Scholar
  51. González-Megías A, Gómez JM, Sánchez-Piñero F (2005) Consequences of spatial autocorrelation for the analysis of metapopulation dynamics. Ecology 86(12):3264–3271CrossRefGoogle Scholar
  52. Grimm V, Railsback SF (2005) Individual-based modeling and ecology. Princeton University Press, PrincetonGoogle Scholar
  53. Hamilton MP, Graham EA, Rundel PW, Allen MF, Kaiser W, Hansen MH, Estrin DL (2007) New approaches in embedded networked sensing for terrestrial ecological observatories. Environ Eng Sci 24(2):192–204Google Scholar
  54. Harrison Hugo B, Williamson David H, Evans Richard D, Almany Glenn R, Thorrold Simon R, Russ Garry R, Feldheim Kevin A, van Herwerden L, Planes S, Srinivasan M, Berumen Michael L, Jones Geoffrey P (2012) Larval export from marine reserves and the recruitment benefit for fish and fisheries. Curr Biol 22(11):1023–1028Google Scholar
  55. Hedgecock D, Barber PH, Edmands S (2007) Genetic approaches to measuring connectivity. Oceanography 20(3):70–79CrossRefGoogle Scholar
  56. Heller NE, Zavaleta ES (2009) Biodiversity management in the face of climate change: a review of 22 years of recommendations. Biol Conserv 142(1):14–32CrossRefGoogle Scholar
  57. Higgins AJ, Hajkowicz S, Bui E (2008) A multi-objective model for environmental investment decision making. Comput Oper Res 35(1):253–266CrossRefGoogle Scholar
  58. Hilty J, Lidicker WZ Jr, Merenlender A (2006) Corridor ecology: the science and practice of linking landscapes for biodiversity conservation. Island Press, Washington, DCGoogle Scholar
  59. Hobson KA (2008) Applying isotopic methods to tracking animal movements. In: Keith AH, Leonard IW (eds) Terrestrial ecology. Elsevier, New York, pp 45–78Google Scholar
  60. Hodgson JA, Moilanen A, Thomas CD (2009a) Metapopulation responses to patch connectivity and quality are masked by successional habitat dynamics. Ecology 90(6):1608–1619PubMedCrossRefGoogle Scholar
  61. Hodgson JA, Thomas CD, Wintle BA, Moilanen A (2009b) Climate change, connectivity and conservation decision making: back to basics. J Appl Ecol 46(5):964–969CrossRefGoogle Scholar
  62. Holderegger R, Wagner H (2006) A brief guide to landscape genetics. Landscape Ecol 21(6):793–796CrossRefGoogle Scholar
  63. Holmes EE, Lewis MA, Banks JE, Veit RR (1994) Partial differential equations in ecology: spatial interactions and population dynamics. Ecology 75(1):17–29CrossRefGoogle Scholar
  64. Hudson ME (2008) Sequencing breakthroughs for genomic ecology and evolutionary biology. Mol Ecol Res 8(1):3–17CrossRefGoogle Scholar
  65. Hulme PE (2009) Trade, transport and trouble: managing invasive species pathways in an era of globalization. J Appl Ecol 46(1):10–18CrossRefGoogle Scholar
  66. Jacobi MN, Jonsson PR (2011) Optimal networks of nature reserves can be found through eigenvalue perturbation theory of the connectivity matrix. Ecol Appl 21(5):1861–1870PubMedCrossRefGoogle Scholar
  67. Jacobi MN, André C, Döös K, Jonsson PR (2012) Identification of subpopulations from connectivity matrices. Ecography doi: 10.1111/j.1600-0587.2012.07281.x
  68. Jacobson B, Peres-Neto P (2010) Quantifying and disentangling dispersal in metacommunities: how close have we come? How far is there to go? Landscape Ecol 25(4):495–507CrossRefGoogle Scholar
  69. Jaquiéry J, Broquet T, Hirzel AH, Yearsley J, Perrin N (2011) Inferring landscape effects on dispersal from genetic distances: how far can we go? Mol Ecol 20(4):692–705PubMedCrossRefGoogle Scholar
  70. Johst K, Drechsler M, van Teeffelen AJA, Hartig F, Vos CC, Wissel S, Wätzold F, Opdam P (2011) Biodiversity conservation in dynamic landscapes: trade-offs between number, connectivity and turnover of habitat patches. J Appl Ecol 48(5):1227–1235Google Scholar
  71. Jombart T, Pontier D, Dufour AB (2009) Genetic markers in the playground of multivariate analysis. Heredity 102(4):330–341PubMedCrossRefGoogle Scholar
  72. Jones AG, Ardren WR (2003) Methods of parentage analysis in natural populations. Mol Ecol 12:2511–2523PubMedCrossRefGoogle Scholar
  73. Jones GP, Planes S, Thorrold SR (2005) Coral reef fish larvae settle close to home. Curr Biol 15(14):1314–1318PubMedCrossRefGoogle Scholar
  74. Jones AG, Small CM, Paczolt KA, Ratterman NL (2010) A practical guide to methods of parentage analysis. Mol Ecol Res 10(1):6–30CrossRefGoogle Scholar
  75. Karanth KU, Nichols JD, Kumar NS, Hines JE (2006) Assessing tiger population dynamics using photographic capture-recapture sampling. Ecology 87(11):2925–2937PubMedCrossRefGoogle Scholar
  76. Kays R, Kranstauber B, Jansen C, Carbone P, Rowcliffe M, Foundtain T Tilak S (2009) Camera traps as sensor networks for monitoring animal communities. In: Local computer networks, LCN 2009. IEEE 34th conference on, 2009, pp 811–818Google Scholar
  77. Kindlmann P, Burel F (2008) Connectivity measures: a review. Landscape Ecol 23(8):879–890Google Scholar
  78. Kool JT (2009) An object-oriented, individual-based approach for simulating the dynamics of genes in subdivided populations. Ecol Inform 4:136–146CrossRefGoogle Scholar
  79. Kool JT, Paris CB, Andréfouët S, Cowen RK (2010) Complex migration and the development of genetic structure in subdivided populations: an example from Caribbean coral reef ecosystems. Ecography 33:597–606Google Scholar
  80. Kool JT, Paris CB, Barber PH, Cowen RK (2011) Connectivity and the development of population genetic structure in Indo-West Pacific coral reef communities. Glob Ecol Biogeogr 20(5):695–706CrossRefGoogle Scholar
  81. Leathwick JR, Moilanen A, Ferrier S, Julian K (2010) Complementarity-based conservation prioritization using a community classification, and its application to riverine ecosystems. Biol Conserv 143(4):984–991Google Scholar
  82. Lehtomäki J, Tomppo E, Kuokkanen P, Hanski I, Moilanen A (2009) Applying spatial conservation prioritization software and high-resolution GIS data to a national-scale study in forest conservation. For Ecol Manage 258(11):2439–2449CrossRefGoogle Scholar
  83. Levey DJ, Tewksbury JJ, Bolker BM (2008) Modelling long-distance seed dispersal in heterogeneous landscapes. J Ecol 96(4):599–608CrossRefGoogle Scholar
  84. Liu J, Hull V, Morzillo AT, Wiens JA (2011) Sources. Cambridge University Press, Cambridge, MA, Sinks and SustainabilityGoogle Scholar
  85. Lowe WH, Allendorf FW (2010) What can genetics tell us about population connectivity? Mol Ecol 19(15):3038–3051PubMedCrossRefGoogle Scholar
  86. Luque S, Saura S, Fortin M-J (2012) Landscape connectivity analysis for conservation: insights from combining new methods with ecological and genetic data. Landscape Ecol 27:153–157CrossRefGoogle Scholar
  87. Mackenzie DI, Nichols JD, Hines JE, Knutson MG, Franklin AB (2003) Estimating site occupancy, colonization, and local extinction when a species is detected imperfectly. Ecology 84(8):2200–2207CrossRefGoogle Scholar
  88. Manel S, Schwartz MK, Luikart G, Taberlet P (2003) Landscape genetics: combining landscape ecology and population genetics. Trends Ecol Evol 18(4):189–197CrossRefGoogle Scholar
  89. Marshall TC, Slate J, Kruuk LEB, Pemberton JM (1998) Statistical confidence for likelihood-based paternity inference in natural populations. Mol Ecol 7(5):639–655PubMedCrossRefGoogle Scholar
  90. Martin Taylor S (2009) Transformative ocean science through the VENUS and NEPTUNE Canada ocean observing systems. Nucl Instrum Methods Phys Res, Sect A 602(1):63–67CrossRefGoogle Scholar
  91. McGarigal K, Cushman SA, Neel MC, Ene E (2002) FRAGSTATS: spatial pattern analysis program for categorical maps. University of Massachusetts, AmherstGoogle Scholar
  92. McRae BH, Dickson BG, Keitt TH, Shah VB (2008) Using circuit theory to model connectivity in ecology, evolution, and conservation. Ecology 89(10):2712–2724PubMedCrossRefGoogle Scholar
  93. Miller JH, Page SE (2007) Complex adaptive systems: an introduction to computational models of social life. Princeton University Press, PrincetonGoogle Scholar
  94. Millspaugh J, Marzluff JM (eds) (2001) Radio tracking and animal populations. Academic Press, Salt Lake CityGoogle Scholar
  95. Minor ES, Urban DL (2008) A graph-theory framework for evaluating landscape connectivity and conservation planning. Conserv Biol 22(2):297–307PubMedCrossRefGoogle Scholar
  96. Minor ES, Tessel SM, Engelhardt KAM, Lookingbill TR (2009) The role of landscape connectivity in assembling exotic plant communities: a network analysis. Ecology 90(7):1802–1809PubMedCrossRefGoogle Scholar
  97. Mitarai S, Siegel DA, Winters KB (2008) A numerical study of stochastic larval settlement in the California Current system. J Mar Syst 69(3–4):295–309CrossRefGoogle Scholar
  98. Mobley KB (2011) Grandfathering in a new era of parentage analysis. Mol Ecol 20(6):1080–1082PubMedCrossRefGoogle Scholar
  99. Moilanen A (2011) On the limitations of graph-theoretic connectivity in spatial ecology and conservation. J Appl Ecol 48:1543–1547CrossRefGoogle Scholar
  100. Moilanen A, Nieminen M (2002) Simple connectivity measures in spatial ecology. Ecology 83(4):1131–1145CrossRefGoogle Scholar
  101. Moilanen A, Wintle BA (2007) The boundary-quality penalty: a quantitative method for approximating species responses to fragmentation in reserve selection. Conserv Biol 21(2):355–364PubMedCrossRefGoogle Scholar
  102. Munday P, Leis J, Lough J, Paris C, Kingsford M, Berumen M, Lambrechts J (2009) Climate change and coral reef connectivity. Coral Reefs 28(2):379–395Google Scholar
  103. Munro AR, Gillanders BM, Thurstan S, Crook DA, Sanger AC (2009) Transgenerational marking of freshwater fishes with enriched stable isotopes: a tool for fisheries management and research. J Fish Biol 75(3):668–684PubMedCrossRefGoogle Scholar
  104. Musyl MK, Domeier ML, Nasby-Lucas N, Brill RW, McNaughton LM, Swimmer JY, Lutcavage MS, Wilson SG, Galuardi B, Liddle JB (2011) Performance of pop-up satellite archival tags. Mar Ecol Prog Ser 433:1–28Google Scholar
  105. Naujokaitis-Lewis IR, Curtis JMR, Arcese P, Rosenfeld J (2009) Sensitivity analyses of spatial population viability analysis models for species at risk and habitat conservation planning. Conserv Biol 23(1):225–229PubMedCrossRefGoogle Scholar
  106. Newsome SD, Martinez del Rio C, Bearhop S, Phillips DL (2007) A niche for isotopic ecology. Front Ecol Environ 5(8):429–436Google Scholar
  107. Ogryczak W, Wierzbicki A, Milewski M (2008) A multi-criteria approach to fair and efficient bandwidth allocation. Omega 36(3):451–463CrossRefGoogle Scholar
  108. Opsahl T, Agneessens F, Skvoretz J (2010) Node centrality in weighted networks: generalizing degree and shortest paths. Soc Netw 32(3):245–251CrossRefGoogle Scholar
  109. Ouborg NJ, Pertoldi C, Loeschcke V, Bijlsma RK, Hedrick PW (2010) Conservation genetics in transition to conservation genomics. Trends Genet 26(4):177–187PubMedCrossRefGoogle Scholar
  110. Ovaskainen O (2004) Habitat-specific movement parameters estimated using mark-recapture data and a diffusion model. Ecology 85(1):242–257CrossRefGoogle Scholar
  111. Ovaskainen O (2008) Analytical and numerical tools for diffusion-based movement models. Theor Popul Biol 73(2):198–211PubMedCrossRefGoogle Scholar
  112. Ovaskainen O, Luoto M, Ikonen I, Rekola H, Meyke E, Kuussaari M (2008a) An empirical test of a diffusion model: predicting clouded apollo movements in a novel environment. Am Nat 171(5):610–619PubMedCrossRefGoogle Scholar
  113. Ovaskainen O, Rekola H, Meyke E, Arjas E (2008b) Bayesian methods for analyzing movements in heterogeneous landscapes from mark-recapture data. Ecology 89(2):542–554PubMedCrossRefGoogle Scholar
  114. Ovaskainen O, Smith AD, Osborne JL, Reynolds DR, Carreck NL, Martin AP, Niitepõld K, Hanski I (2008c) Tracking butterfly movements with harmonic radar reveals an effect of population age on movement distance. PNAS 105(49):19090–19095Google Scholar
  115. Palla G, Derenyi I, Farkas I, Vicsek T (2005) Uncovering the overlapping community structure of complex networks in nature and society. Nature 435(7043):814–818PubMedCrossRefGoogle Scholar
  116. Paris CB, Chérubin LM, Cowen RK (2007) Surfing, spinning, or diving from reef to reef: effects on population connectivity. Mar Ecol Prog Ser 347:285–300CrossRefGoogle Scholar
  117. Parker PG, Snow AA, Schug MD, Booton GC, Fuerst PA (1998) What molecules can tell us about populations: choosing and using a molecular marker. Ecology 79(2):361–382Google Scholar
  118. Pascual-Hortal L, Saura S (2006) Comparison and development of new graph-based landscape connectivity indices: towards the priorization of habitat patches and corridors for conservation. Landscape Ecol 21(7):959–967CrossRefGoogle Scholar
  119. Patterson TA, Evans K, Carter TI, Gunn JS (2008a) Movement and behaviour of large southern bluefin tuna (Thunnus maccoyii) in the Australian region determined using pop-up satellite archival tags. Fish Oceanogr 17(5):352–367CrossRefGoogle Scholar
  120. Patterson TA, Thomas L, Wilcox C, Ovaskainen O, Matthiopoulos J (2008b) State-space models of individual animal movement. Trends Ecol Evol 23(2):87–94PubMedCrossRefGoogle Scholar
  121. Pauli JN, Ben-David M, Buskirk SW, Depue JE, Smith WP (2009) An isotopic technique to mark mid-sized vertebrates non-invasively. J Zool 278(2):141–148CrossRefGoogle Scholar
  122. Pineda J, Hare JA, Sponaugle S (2007) Larval transport and dispersal in the coastal ocean and consequences for population connectivity. Oceanography 20(3):22–39CrossRefGoogle Scholar
  123. Pinsky ML, Montes HR, Palumbi SR (2010) Using isolation by distance and effective density to estimate dispersal scales in anemonefish. Evolution 64:2688–2700PubMedCrossRefGoogle Scholar
  124. Planes S, Jones GP, Thorrold SR (2009) Larval dispersal connects fish populations in a network of marine protected areas. PNAS 106:5693–5697PubMedCrossRefGoogle Scholar
  125. Porter J, Arzberger P, Braun H-W, Bryant P, Gage S, Hansen T, Hanson P, Lin C-C, Lin F-P, Kratz T, Michener W, Shapiro S, Williams T (2005) Wireless sensor networks for ecology. Bioscience 55(7):561–572Google Scholar
  126. Pressey RL, Cabeza M, Watts ME, Cowling RM, Wilson KA (2007) Conservation planning in a changing world. Trends Ecol Evol 22(11):583–592PubMedCrossRefGoogle Scholar
  127. Pringle C (2003) The need for a more predictive understanding of hydrologic connectivity. Aqua Conserv Mar Freshw Ecosyst 13(6):467–471CrossRefGoogle Scholar
  128. Proulx SR, Promislow DEL, Phillips PC (2005) Network thinking in ecology and evolution. Trends Ecol Evol 20(6):345–353PubMedCrossRefGoogle Scholar
  129. Raeymaekers JAM, Maes GE, Geldof S, Hontis I, Nackaerts K, Volckaert FAM (2008) Modeling genetic connectivity in sticklebacks as a guideline for river restoration. Evol Appl 1(3):475–488CrossRefGoogle Scholar
  130. Randall LA, Diehl RH, Wilson BC, Barrow WC Jr, Jeske CW (2011) Potential use of weather radar to study movements of wintering waterfowl. J Wildl Manag 75(6):1324–1329CrossRefGoogle Scholar
  131. Ray N (2005) PATHMATRIX: a geographical information system tool to compute effective distances among samples. Mol Ecol Notes 5(1):177–180CrossRefGoogle Scholar
  132. Rayfield B, Fortin M-J, Fall A (2011) Connectivity for conservation: a framework to classify network measures. Ecology 92(4):847–858PubMedCrossRefGoogle Scholar
  133. Recio MR, Mathieu R, Denys P, Sirguey P, Seddon PJ (2011) Lightweight GPS-tags, one giant leap for wildlife tracking? An assessment approach. PLoS ONE 6(12):e28225PubMedCrossRefGoogle Scholar
  134. Roberts JJ, Best BD, Dunn DC, Treml EA, Halpin PN (2010) Marine geospatial ecology tools: an integrated framework for ecological geoprocessing with ArcGIS, Python, R, MATLAB, and C++. Environ Model Softw 25(10):1197–1207CrossRefGoogle Scholar
  135. Rubenstein DR, Hobson KA (2004) From birds to butterflies: animal movement patterns and stable isotopes. Trends Ecol Evol 19(5):256–263PubMedCrossRefGoogle Scholar
  136. Rubio L, Saura S (2012) Assessing the importance of individual habitat patches as irreplaceable connecting elements: an analysis of simulated and real landscape data. Ecol Complex 11:28–37CrossRefGoogle Scholar
  137. Rutz C, Hays GC (2009) New frontiers in biologging science. Biol Lett 5(3):289–292PubMedCrossRefGoogle Scholar
  138. Saenz-Agudelo P, Jones GP, Thorrold SR, Planes S (2009) Estimating connectivity in marine populations: an empirical evaluation of assignment tests and parentage analysis under different gene flow scenarios. Mol Ecol 18(8):1765–1776PubMedCrossRefGoogle Scholar
  139. Sarkar S, Pressey RL, Faith DP et al (2006) Biodiversity conservation planning tools: present status and challenges for the future. Annu Rev Environ Resour 31:123–159CrossRefGoogle Scholar
  140. Saura S, Pascual-Hortal L (2007) A new habitat availability index to integrate connectivity in landscapte conservation planning: comparison with existing indices and application to a case study. Landsc Urb Plan 83:91–103CrossRefGoogle Scholar
  141. Saura S, Rubio L (2010) A common currency for the different ways in which patches and links can contribute to habitat availability and connectivity in the landscape. Ecography 33(3):523–537Google Scholar
  142. Saura S, Torné J (2009) Conefor Sensinode 2.2: a software package for quantifying the importance of habitat patches for landscape connectivity. Environ Model Softw 24(1):135–139CrossRefGoogle Scholar
  143. Selkoe KA, Henzler CM, Gaines SD (2008) Seascape genetics and the spatial ecology of marine populations. Fish Fish 9(4):363–377CrossRefGoogle Scholar
  144. Slone DH (2011) Increasing accuracy of dispersal kernels in grid-based population models. Ecol Model 222(3):573–579CrossRefGoogle Scholar
  145. Storfer A, Murphy MA, Spear SF, Holderegger R, Waits LP (2010) Landscape genetics: where are we now? Mol Ecol 19(17):3496–3514PubMedCrossRefGoogle Scholar
  146. Sutherland WJ (ed) (2006) Ecological census techniques: a handbook. Cambridge University Press, CambridgeGoogle Scholar
  147. Taylor PD, Fahrig L, Henein K, Merriam G (1993) Connectivity is a vital element of landscape structure. Oikos 68(3):571–573CrossRefGoogle Scholar
  148. Thorrold SR, Zacherl DC, Levin LA (2007) Population connectivity and larval dispersal using geochemical signatures in calcified structures. Oceanography 20(3):80–89CrossRefGoogle Scholar
  149. Treml EA, Halpin PN (in press) Marine population connectivity identifies ecological neighbors for conservation planning in the Coral Triangle. Cons Lett. doi: 10.1111/j.1755-263X.2012.00260.x
  150. Treml EA, Halpin PN, Urban DL, Pratson LF (2008) Modeling population connectivity by ocean currents, a graph-theoretic approach for marine conservation. Landscape Ecol 23(S1):19–36Google Scholar
  151. Tsafrir D, Tsafrir I, Ein-Dor L, Zuk O, Notterman DA, Domany E (2005) Sorting points into neighborhoods (SPIN): data analysis and visualization by ordering distance matrices. Bioinformatics 21(10):2301–2308PubMedCrossRefGoogle Scholar
  152. Tsechpenakis G, Guigand C, Cowen RK (2007) Image analysis techniques to accompany a new in situ Ichthyoplankton imaging system. In: OCEANS 2007—Europe, pp 1–6Google Scholar
  153. Turner W, Spector S, Gardiner N, Fladeland M, Sterling E, Steininger M (2003) Remote sensing for biodiversity science and conservation. Trends Ecol Evol 18(6):306–314CrossRefGoogle Scholar
  154. Urban D, Keitt T (2001) Landscape connectivity: a graph-theoretic perspective. Ecology 82(5):1205–1218CrossRefGoogle Scholar
  155. Urban DL, Minor ES, Treml EA, Schick RS (2009) Graph models of habitat mosaics. Ecol Lett 12(3):260–273PubMedCrossRefGoogle Scholar
  156. Urbano F, Cagnacci F, Calenge C, Dettki H, Cameron A, Neteler M (2010) Wildlife tracking data management: a new vision. Phil Trans R Soc Lond B 365(1550):2177–2185CrossRefGoogle Scholar
  157. Van Teeffelen AJA, Ovaskainen O (2007) Can the cause of aggregation be inferred from species distributions? Oikos 116(1):4–16CrossRefGoogle Scholar
  158. Visconti P, Elkin C (2009) Using connectivity metrics in conservation planning—when does habitat quality matter? Divers Distrib 15(4):602–612CrossRefGoogle Scholar
  159. Wang A, Afshar P, Wang H (2008) Complex stochastic systems modelling and control via iterative machine learning. Neurocomputing 71(13–15):2685–2692CrossRefGoogle Scholar
  160. Wang K, Franklin SE, Guo X, Cattet M (2010) Remote sensing of ecology, biodiversity and conservation: a review from the perspective of remote sensing specialists. Sensors 10:9647–9667PubMedCrossRefGoogle Scholar
  161. Waples RS, Gaggiotti OE (2006) What is a population? An empirical evaluation of some genetic methods for identifying the number of gene pools and their degree of connectivity. Mol Ecol 15:1419–1439PubMedCrossRefGoogle Scholar
  162. Wasserman TN, Cushman SA, Shirk AS, Landguth EL, Littell JS (2012) Simulating the effects of climate change on population connectivity of American marten (Martes americana) in the northern Rocky Mountains, USA. Landscape Ecol 27:211–225CrossRefGoogle Scholar
  163. Watts ME, Ball IR, Stewart RS, Klein CJ, Wilson K, Steinback C, Lourival R, Kircher L, Possingham HP (2009) Marxan with zones: software for optimal conservation based land- and sea-use zoning. Environ Model Softw 24(12):1513–1521Google Scholar
  164. Webster MS, Marra PP, Haig SM, Bensch S, Holmes RT (2002) Links between worlds: unraveling migratory connectivity. Trends Ecol Evol 17(2):76–83CrossRefGoogle Scholar
  165. West JB, Bowen GJ, Cerling TE, Ehleringer JR (2006) Stable isotopes as one of nature’s ecological recorders. Trends Ecol Evol 21(7):408–414PubMedCrossRefGoogle Scholar
  166. White C, Selkoe KA, Watson J, Siegel DA, Zacherl DC, Toonen RJ (2010) Ocean currents help explain population genetic structure. Proc R Soc B Biol Sci 277(1688):1685–1694CrossRefGoogle Scholar
  167. Williamson David H, Jones GP, T SR, Frisch AJ (2009) Transgenerational marking of marine fish larvae: stable-isotope retention, physiological effects and health issues. J Fish Biol 74(4):891–905CrossRefGoogle Scholar
  168. Woods RJ, Macdonald JI, Crook DA, Schmidt DJ, Hughes JM (2010) Contemporary and historical patterns of connectivity among populations of an inland river fish species inferred from genetics and otolith chemistry. Can J Fish Aquat Sci 67:1098–1115CrossRefGoogle Scholar

Copyright information

© Crown Copyright 2012

Authors and Affiliations

  • Johnathan T. Kool
    • 1
    • 2
    • 5
    Email author
  • Atte Moilanen
    • 3
  • Eric A. Treml
    • 4
    • 6
  1. 1.ARC Centre of Excellence for Coral Reef StudiesJames Cook UniversityTownsvilleAustralia
  2. 2.Australian Institute of Marine ScienceTownsvilleAustralia
  3. 3.Department of BiosciencesUniversity of HelsinkiFinland
  4. 4.School of Biological Science, University of QueenslandSt. LuciaAustralia
  5. 5.Geoscience AustraliaSymonstonAustralia
  6. 6.Department of ZoologyUniversity of MelbourneMelbourneAustralia

Personalised recommendations