Skip to main content

Advertisement

Log in

Factors affecting intraspecific variation in home range size of a large African herbivore

  • Research Article
  • Published:
Landscape Ecology Aims and scope Submit manuscript

Abstract

Factors affecting intraspecific variation in home range size have rarely been examined using modern statistical and remote sensing methods. This is especially true for animals in seasonal savanna environments in Africa, despite this biome’s importance for both conservation and development goals. We studied the impacts of spatial and temporal variability in environmental conditions, along with individual and social factors, on home range sizes in African buffalo (Syncerus caffer) in northeastern Namibia. Our data set spans 4 years, is derived from 32 satellite tracking collars, and contains over 35,000 GPS locations. We used the local convex hull method to estimate home range size from 31 buffalo captured at 6 sites. We used a variety of remotely sensed data to characterize potential anthropogenic and natural boundaries, as well as seasonal and temporal heterogeneity in environmental conditions. Using an information-theoretic, mixed effects approach, our analyses showed that home ranges varied over two orders of magnitude and are among the largest recorded for this species. Variables relating to vegetation and habitat boundaries were more important than abiotic environmental conditions and individual or social factors in explaining variation in home range size. The relative contributions of environmental, individual, social, and linear boundary variables to intraspecific home range size have rarely been examined and prior to this had not been assessed for any species in seasonal savannas of Africa. Understanding the factors that condition space-use patterns of wildlife in this area will lead to better-informed conservation and sustainable development decisions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Anderson DP, Forester JD, Turner MG, Frair JL, Merrill EH, Fortin D, Mao JS, Boyce MS (2005) Factors influencing female home range sizes in elk (Cervus elaphus) in North American landscapes. Landscape Ecol 20(3):257–271

    Article  Google Scholar 

  • Bar-David S, Bar-David I, Cross PC, Ryan SJ, Knechtel CU, Getz WM (2009) Methods for assessing movement path recursion with application to African buffalo in South Africa. Ecology 90(9):2467–3479

    Article  PubMed  Google Scholar 

  • Borger L, Franconi N, De Michele G, Gantz A, Meschi F, Manica A, Lovari S, Coulson T (2006a) Effects of sampling regime on the mean and variance of home range size estimates. J Anim Ecol 75(6):1393–1405

    Article  PubMed  Google Scholar 

  • Borger L, Franconi N, Ferretti F, Meschi F, De Michele G, Gantz A, Coulson T (2006b) An integrated approach to identify spatiotemporal and individual-level determinants of animal home range size. Am Nat 168(4):471–485

    Article  PubMed  Google Scholar 

  • Borger L, Dalziel BD, Fryxell JM (2008) Are there general mechanisms of animal home range behaviour? A review and prospects for future research. Ecol Lett 11(6):637–650

    Article  PubMed  Google Scholar 

  • Bro-Jorgensen J, Brown ME, Pettorelli N (2008) Using the satellite-derived normalized difference vegetation index (NDVI) to explain ranging patterns in a lek-breeding antelope: the importance of scale. Oecologia 158:177–182

    Article  PubMed  Google Scholar 

  • Burgess N, D’Amico JH, Underwood E, Dinerstein E (2004) Terrestrial ecoregions of Africa and Madagascar: a conservation assessment. Island Press, Washington, DC

    Google Scholar 

  • Burnham KP, Anderson D (1998) Model selection and multimodel inference: a practical information-theoretic approach. Springer, New York

    Google Scholar 

  • Cagnacci F, Boitani L, Powell RA, Boyce MS (2010) Animal ecology meets GPS-based radio-telemetry: a perfect storm of opportunities and challenges. Phil Trans R Soc B 365:2157–2162

    Article  PubMed  Google Scholar 

  • Calenge C (2006) The package “adehabitat” for the R software: a tool for the analysis of space and habitat use by animals. Ecol Model 197(3–4):516–519

    Article  Google Scholar 

  • Chammaille-Jammes S, Fritz H, Murindagomo F (2007) Climate-driven fluctuations in surface-water availability and the buffering role of artificial pumping in an African savanna: potential implications for herbivore dynamics. Austral Ecol 32:740–748

    Article  Google Scholar 

  • Cross PC, Lloyd-Smith JO, Getz WM (2005) Disentangling association patterns in fission-fusion societies using African buffalo as an example. Anim Behav 69:499–506

    Article  Google Scholar 

  • Du Toit JT, Cumming DHM (1999) Functional significance of ungulate diversity in African savannas and the ecological implications of the spread of pastoralism. Biodivers Conserv 8(12):1643–1661

    Article  Google Scholar 

  • Estes RD (1991) The behavior guide to African mammals. University of California Press, Los Angeles

    Google Scholar 

  • Forester JD, Ives AR, Turner MG, Anderson DP, Fortin D, Beyer HL, Smith DW, Boyce MS (2007) State-space models link elk movement patterns to landscape characteristics in Yellowstone National Park. Ecol Monogr 77(2):285–299

    Article  Google Scholar 

  • Frair JL, Merrill EH, Visscher DR, Fortin D, Beyer HL, Morales JM (2005) Scales of movement by elk (Cervus elaphus) in response to heterogeneity in forage resources and predation risk. Landscape Ecol 20(3):273–287

    Article  Google Scholar 

  • Fryxell JM, Wilmshurst JF, Sinclair ARE (2004) Predictive models of movement by Serengeti grazers. Ecology 85(9):2429–2435

    Article  Google Scholar 

  • Fryxell JM, Mosser A, Sinclair ARE, Packer C (2007) Group formation stabilizes predator-prey dynamics. Nature 449(7165):1041–1043

    Article  PubMed  CAS  Google Scholar 

  • Fryxell JM, Hazell M, Borger L, Dalziel BD, Haydon DT, Morales JM, Mcintosh T, Rosatte RC (2008) Multiple movement modes by large herbivores at multiple spatiotemporal scales. Proc Natl Acad Sci 105(49):19114–19119

    Article  PubMed  CAS  Google Scholar 

  • Gelman A (2008) Scaling regression inputs by dividing by two standard deviations. Stat Med 27:2865–2873

    Article  PubMed  Google Scholar 

  • Getz WM, Wilmers CC (2004) A local nearest-neighbor convex-hull construction of home ranges and utilization distributions. Ecography 27:489–505

    Article  Google Scholar 

  • Getz WM, Fortmann-Rose S, Cross PC, Lyons AJ, Ryan SJ, Wilmers CC (2007) LoCoH: nonparametric kernel methods for constructing home ranges and utilization distributions. PLoS ONE 2(2):e207. doi:10.1371/journal.pone.0000207

    Article  PubMed  Google Scholar 

  • Gillies CS, Hebblewhite M, Nielsen SE, Krawchuk MA, Aldridge CL, Frair JL, Saher DJ, Stevens CE, Jerde CL (2006) Application of random effects to the study of resource selection by animals. J Anim Ecol 75:887–898

    Article  PubMed  Google Scholar 

  • Haas EM, Bartholome E, Combal B (2009) Time series analysis of optical remote sensing data for the mapping of temporary surface water bodies in sub-Saharan western Africa. J Hydrol 370:52–63

    Article  Google Scholar 

  • Halley DJ, Mari M (2004) Dry season social affiliation of African buffalo bulls at the Chobe riverfront, Botswana. S Afr J Wildl Res 34(2):105–111

    Google Scholar 

  • Halley DJ, Vandewalle MEJ, Mari M, Taolo C (2002) Herd-switching and long-distance dispersal in female African buffalo Syncerus caffer. Afr J Ecol 40(1):97–99

    Article  Google Scholar 

  • Hamel S, Garel M, Festa-Bianchet M, Gaillard J-M, Côté SD (2009) Spring normalized difference vegetation index (NDVI) predicts annual variation in timing of peak faecal crude protein in mountain ungulates. J Appl Ecol 46(3):582–589

    Article  Google Scholar 

  • Hansen MC, DeFries RS, Townshend JRG, Carroll M, Dimiceli C, Sohlberg RA (2003) Global percent tree cover at a spatial resolution of 500 meters: first results of the MODIS vegetation continuous fields algorithm. Earth Interact 7:1–15

    Article  Google Scholar 

  • Hebblewhite M, Haydon DT (2010) Distinguishing technology from biology: a critical review of the use of GPS telemetry data in ecology. Phi Trans R Soc B 365:2303–2312

    Article  Google Scholar 

  • Humphries NE, Queiroz N, Dyer JRM, Pade NG, Musyl MK, Schaefer KM, Fuller DW, Brunnschweiler JM, Doyle TK, Houghton JDR, Hays GC, Jones CS, Noble LR, Wearmouth VJ, Southall EJ, Sims DW (2010) Environmental context explains Levy and Brownian movement patterns of marine predators. Nature 465(7301):1066–1069

    Article  PubMed  CAS  Google Scholar 

  • Jetz W, Carbone C, Fulford J, Brown JH (2004) The scaling of animal space use. Science 306:266–268

    Article  PubMed  CAS  Google Scholar 

  • Jonsen ID, Flemming JM, Myers RA (2005) Robust state-space modeling of animal movement data. Ecology 86(11):2874–2880

    Article  Google Scholar 

  • Lichti NI, Swihart RK (2011) Estimating utilization distributions with kernel versus local convex hull methods. J Wildl Manag 75(2):413–422

    Article  Google Scholar 

  • Lindsey PA, Roulet PA, Romanach SS (2007) Economic and conservation significance of the trophy hunting industry in sub-Saharan Africa. Biol Conserv 134(4):455–469

    Article  Google Scholar 

  • Loarie SR, Van Aarde RJ, Pimm SL (2009a) Elephant seasonal vegetation preferences across dry and wet savannahs. Biol Conserv 142:3099–3107

    Article  Google Scholar 

  • Loarie SR, Van Aarde RJ, Pimm SL (2009b) Fences and artificial water affect African savannah elephant movement patterns. Biol Conserv 142:3086–3098

    Article  Google Scholar 

  • MacNally R (1996) Hierarchical partitioning as an interpretative tool in multivariate inference. Aust J Ecol 21:224–228

    Article  Google Scholar 

  • MacNally R (2002) Multiple regression and inference in ecology and conservation biology: further comments on identifying important predictor variables. Biodivers Conserv 11:1397–1401

    Article  Google Scholar 

  • MacNally R, Walsh CJ (2004) Hierarchical partitioning public-domain software. Biodivers Conserv 13:659–660

    Article  Google Scholar 

  • Marshal JP, Bleich VC, Krausman PR, Reed ML, Andrew NG (2006) Factors affecting habitat use and distribution of desert mule deer in an arid environment. Wildl Soc Bull 34(3):609–619

    Article  Google Scholar 

  • McLoughlin PD, Ferguson SH (2000) A hierarchical pattern of limiting factors helps explain variation in home range size. Ecoscience 7(2):123–130

    Google Scholar 

  • McNaughton SJ, Georgiadis NJ (1986) Ecology of African grazing and browsing mammals. Annu Rev Ecol Syst 17:39–65

    Article  Google Scholar 

  • Melletti M, Penteriani V, Boitani L (2007) Habitat preferences of the secretive forest buffalo (Syncerus caffer nanus) in Central Africa. J Zool 271(2):178–186

    Article  Google Scholar 

  • Mendelsohn J, Roberts C (1997) An environmental profile and atlas of Caprivi. Gamsberg Macmillian, Windhoek

    Google Scholar 

  • Mendelsohn J, Jarvis A, Roberts C, Robertson T (2002) Atlas of Namibia: a portrait of the land and its people. David Philip Publishers, Cape Town

    Google Scholar 

  • Millennium Ecosystem Assessment (2005) Ecosystems and human well-being: synthesis. Island Press, Washington, DC

    Google Scholar 

  • Moorcroft PR, Barnett A (2008) Mechanistic home range models and resource selection analysis: a reconciliation and unification. Ecology 89(4):1112–1119

    Article  PubMed  Google Scholar 

  • Morales JM, Haydon DT, Frair J, Holsiner KE, Fryxell JM (2004) Extracting more out of relocation data: building movement models as mixtures of random walks. Ecology 85(9):2436–2445

    Article  Google Scholar 

  • Mueller T, Olson KA, Fuller TK, Schaller GB, Murray MG, Leimgruber P (2008) In search of forage: predicting dynamic habitats of Mongolian gazelles using satellite-based estimates of vegetation productivity. J Appl Ecol 45(2):649–658

    Article  Google Scholar 

  • Mulonga S, Suich H, Murphy C (2003) The conflict continues: human wildlife conflict and livelihoods in Caprivi. Ministry of Environment and Tourism, Windhoek

    Google Scholar 

  • Murray K, Conner MM (2009) Methods to quantify variable importance: implications for the analysis of noisy ecological data. Ecology 90(2):348–355

    Article  PubMed  Google Scholar 

  • Naidoo R, Du Preez P, Stuart-Hill G, Jago M, Wegmann M (2012) Home on the range: factors explaining partial migration of African buffalo in a tropical environment. PLoS ONE 7(5):e36527. doi:10.1371/journal.pone.0036527

    Article  PubMed  CAS  Google Scholar 

  • Nathan R, Getz WM, Revilla E, Holyoak M, Kadmon R, Saltz D, Smouse PE (2008) A movement ecology paradigm for unifying organismal movement research. Proc Natl Acad Sci 105(49):19052–19059

    Article  PubMed  CAS  Google Scholar 

  • Ogutu JO, Piepho H-P, Dublin HT, Bhola N, Reid RS (2008) Rainfall influences on ungulate population abundance in the Mara-Serengeti ecosystem. J Anim Ecol 77:814–829

    Article  PubMed  CAS  Google Scholar 

  • Ogutu JO, Piepho H-P, Dublin HT, Bhola N, Reid RS (2010) Rainfall extremes explain interannual shifts in timing and synchrony of calving in topi and warthog. Popul Ecol 52:89–102

    Article  Google Scholar 

  • Patterson TA, Thomas L, Wilcox C, Ovaskainen O, Matthiopoulos J (2008) State-space models of individual animal movement. Trends Ecol Evol 23(2):87–94

    Article  PubMed  Google Scholar 

  • Pettorelli N, Vik JO, Mysterud A, Gaillard J-M, Tucker CJ, Stenseth NC (2005) Using the satellite-derived NDVI to assess ecological responses to environmental change. Trends Ecol Evol 20(9):503–510

    Article  PubMed  Google Scholar 

  • Pettorelli N, Ryan S, Mueller T, Bunnefeld N, Jedrzejewska B, Lima M, Kausrud K (2011) The normalized difference vegetation index (NDVI): unforeseen successes in animal ecology. Clim Res 46(1):15–27

    Article  Google Scholar 

  • Pinheiro JC, Bates DM (2000) Mixed-effects models in S and S-PLUS. Springer, New York

    Book  Google Scholar 

  • Polansky L, Wittemyer G, Cross PC, Tambling CJ, Getz WM (2010) From moonlight to movement and synchronized randomness: fourier and wavelet analyses of animal location time series data. Ecology 91(5):1506–1518

    Article  PubMed  Google Scholar 

  • Prins HHT (1996) Ecology and behaviour of the African buffalo: social inequality and decision making. Chapman & Hall, London

    Book  Google Scholar 

  • Redfern JV, Grant CC, Gaylard A, Getz WM (2005) Surface water availability and the management of herbivore distributions in an African savanna ecosystem. J Arid Environ 63:406–424

    Article  Google Scholar 

  • Rivrud IM, Loe LE, Mysterud A (2010) How does local weather predict red deer home range size at different temporal scales? J Anim Ecol 79(6):1280–1295

    Article  PubMed  Google Scholar 

  • Ryan SJ, Knechtel CU, Getz WM (2006) Range and habitat selection of African buffalo in South Africa. J Wildl Manag 70(3):764–776

    Article  Google Scholar 

  • Said S, Servanty S (2005) The influence of landscape structure on female roe deer home-range size. Landscape Ecol 20(8):1003–1012

    Article  Google Scholar 

  • Sankaran M, Hanan NP, Scholes RJ, Ratnam J, Augustine DJ, Cade BS, Gignoux J, Higgins SI, Le Roux X, Ludwig F, Ardo J, Banyikwa F, Bronn A, Bucini G, Caylor KK, Coughenour MB, Diouf A, Ekaya W, Feral CJ, February EC, Frost PGH, Hiernaux P, Hrabar H, Metzger KL, Prins HHT, Ringrose S, Sea W, Tews J, Worden J, Zambatis N (2005) Determinants of woody cover in African savannas. Nature 438(7069):846–849

    Article  PubMed  CAS  Google Scholar 

  • Sawyer H, Kauffman MJ, Nielson RM, Horne JS (2009) Identifying and prioritizing ungulate migration routes for landscape-level conservation. Ecol Appl 19(8):2016–2025

    Article  PubMed  Google Scholar 

  • Sinclair ARE (1977) The African buffalo: a study of resource limitation of populations. University of Chicago Press, Chicago

    Google Scholar 

  • R Development Core Team (2008) R: A language and environment for statistical computing. ISBN 3-900051-07-0, http://www.R-project.org. Vienna, Austria

  • van Beest FM, Rivrud IM, Loe LE, Milner JM, Mysterud A (2011) What determines variation in home range size across spatiotemporal scales in a large browsing herbivore? J Anim Ecol. doi:10.1111/j.1365-2656.2011.01829.x

    PubMed  Google Scholar 

  • Van de Koppel J, Prins HHT (1998) The importance of herbivore interactions for the dynamics of African savanna woodlands: an hypothesis. J Trop Ecol 14:565–576

    Article  Google Scholar 

  • Viswanathan GM (2010) Ecology: fish in levy-flight foraging. Nature 465(7301):1018–1019

    Article  PubMed  CAS  Google Scholar 

  • Walter WD, VerCauteren KC, Campa H, Clark WR, Fischer JW (2009) Regional assessment on influence of landscape configuration and connectivity on range size of white-tailed deer. Landscape Ecol 24(10):1405–1420

    Article  Google Scholar 

  • Winnie JA, Cross P, Getz W (2009) Habitat quality and heterogeneity influence distribution and behavior in African buffalo (Syncerus caffer). Ecology 89(5):1457–1468

    Article  Google Scholar 

  • Wittemyer G, Polansky L, Douglas-Hamilton I, Getz WM (2008) Disentangling the effects of forage, social rank, and risk on movement autocorrelation of elephants using Fourier and wavelet analyses. Proc Nat Acad Sci 105(49):19108–19113

    Article  PubMed  CAS  Google Scholar 

  • Zeidler J, Wegmann M, Dech S (2012) Spatio-temporal robustness of fractional cover upscaling: a case study in semi arid savannah’s of Namibia and Western Zambia. SPIE Remote Sensing, Edinburgh

    Google Scholar 

  • Zuur AF, Ieno EN, Walker NJ, Saveliev AA, Smith GM (2009) Mixed effects models and extensions in ecology with R. Springer, New York

    Book  Google Scholar 

Download references

Acknowledgments

We thank the Ministry of Environment and Tourism, Namibia, for funding, permission to capture animals in national parks (permits 1537/2010, 1339/2008, and 1184/2007), and logistical support. Erica Rieder, Carol Murphy, Julie Taylor, Ortwin Aschenborn, Vincent Guillemin, Simon Mayes, Beavan Munali, Hans Swartbooi, Bucker, Bollen Zingolo, Shadrich Siloka, Jannie du Preez, Carl-Heinz Moelle, Piet Beytell, Lise Hansen, Euan Anderson, Andrea Capobianco, Scott Loarie, Ally Thompson, Russell Taylor, and Jo Tagg assisted with field work and/or data interpretation and analysis. Special thanks to Sylvia Thompson for help in preparation of figures, and Dave Ward and Raymond Peters for interpretation of the results. We thank WWF-Germany, the Kathryn Fuller Science for Nature Fund, and the Game Products Trust Fund of Namibia for funding the field operations. Comments from Brett Goodwin and three anonymous reviewers greatly improved an earlier draft of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robin Naidoo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Naidoo, R., Preez, P.D., Stuart-Hill, G. et al. Factors affecting intraspecific variation in home range size of a large African herbivore. Landscape Ecol 27, 1523–1534 (2012). https://doi.org/10.1007/s10980-012-9807-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10980-012-9807-3

Keywords

Navigation