Landscape Ecology

, Volume 28, Issue 4, pp 615–636 | Cite as

LandscapeDNDC: a process model for simulation of biosphere–atmosphere–hydrosphere exchange processes at site and regional scale

  • Edwin HaasEmail author
  • Steffen Klatt
  • Alexander Fröhlich
  • Philipp Kraft
  • Christian Werner
  • Ralf Kiese
  • Rüdiger Grote
  • Lutz Breuer
  • Klaus Butterbach-Bahl
Research Article


We present a new model system, which facilitates scaling of ecosystem processes from the site to regional simulation domains. The new framework LandscapeDNDC—partly based on the biogeochemical site scale model DNDC—inherits a series of new features with regard to process descriptions, model structure and data I/O functionality. LandscapeDNDC incorporates different vegetation types and management systems for simulating carbon, nitrogen and water related biosphere–atmosphere–hydrosphere fluxes in forest, arable and grassland ecosystems and allows the dynamic simulation of land use changes. The modeling concept divides ecosystems into six substates (canopy air chemistry, microclimate, physiology, water cycle, vegetation structure, and soil biogeochemistry) and provides alternative modules dealing with these substates. The model can be applied on the site scale, as well as for three-dimensional regional simulations. For regional applications LandscapeDNDC integrates all grid cells synchronously forward in time. This allows easy coupling to other spatially distributed models (e.g. for hydrology or atmospheric chemistry) and efficient two-way exchange of states. This paper describes the fundamental design concept of the model and its object-oriented software implementation. Two example applications are presented. First, calculation of a nitrous oxide emission inventory from agricultural soils for the State of Saxaony (Germany), including data preprocessing of the regional model input data. The computational effort for the LandscapeDNDC preprocessing and simulation could be speed up by a factor of almost 100 compared to the approach using the original DNDC version 9.3. Calculated N2O emissions for Saxony with LandscapeDNDC (2693 t N2O–N/a) were compared with the original DNDC model (2725 t N2O–N/a), the IPCC Tier I methodology (1107 t N2O–N/a), and the German National Inventory Report (equal to IPCC Tier II, 2100 t N2O–N/a). The second example illustrates the capabilities of LandscapeDNDC for building a fully coupled three-dimensional model system on the landscape scale. Therefore we coupled the biogeochemical and plant growth calculations to a hydrological transport model and demonstrate the transport of nitrogen along a virtual hillslope and associated formation of indirect nitrous oxide emissions.


Regionalization Greenhouse gas emissions Inventory DNDC LandscapeDNDC Model coupling 



The authors thank the European Commission funded research project NitroEurope IP (contract 017841) and the German Helmholtz Society for supporting this work within the ENTRANCE project as well as the Robert Bosch Foundation Germany for support. The authors would like to acknowledge the excellent help and assistance of the bureau of environment, agriculture and geology (LfULG) of the state of Saxony for providing input data for the regionalisation study.

Supplementary material

10980_2012_9772_MOESM1_ESM.docx (149 kb)
Supplementary material 1 (DOCX 149 kb)


  1. Aber JD, Federer CA (1992) A generalized, lumped-parameter model of photosynthesis, evapotranspiration and net primary production in temperate and boreal forest ecosystems. Oecologia 92:463–474. doi: 10.1007/BF00317837 CrossRefGoogle Scholar
  2. Beheydt D, Boeckx P, Sleutel S, Li C, Van Cleemput O (2007) Validation of DNDC for 22 long-term N2O field emission measurements. Atmos Environ 41:6196–6211. doi: 10.1016/j.atmosenv.2007.04.003 Google Scholar
  3. Blagodatsky SA, Grote R, Kiese R, Werner C, Butterbach-Bahl K (2011) Modelling of microbial carbon and nitrogen turnover in soil with special emphasis on N-trace gases emission. Plant Soil 346:297–330. doi: 10.1007/s11104-011-0821-z Google Scholar
  4. Bondeau A, Smith PC, Zaehle S, Schaphoff S, Lucht W, Cramer W, Gerten D, Lotze-Campen H, Mueller C, Reichstein M, Smith B (2007) Modelling the role of agriculture for the 20th century global terrestrial carbon balance. Global Change Biol 13:679–706. doi: 10.1111/j.1365-2486.2006.01305.x Google Scholar
  5. Boyer EW, Alexander RB, Parton WJ, Li C, Butterbach-Bahl K, Donner SD, Skaggs RW, Del Grosso SJ (2006) Modeling denitrification in terrestrial and aquatic ecosystems at regional scales. Ecol Appl 16:2123–2142. doi: 10.1890/1051-0761(2006)016[2123:MDITAA]2.0.CO;2 Google Scholar
  6. Butterbach-Bahl K, Dannenmann M (2011) Denitrification and associated soil N2O emissions due to agricultural activities in a changing climate. Curr Opin Environ Sustain 3:389–395. doi: 10.1016/j.cosust.2011.08.004 Google Scholar
  7. Butterbach-Bahl K, Kesik M, Miehle P, Papen H, Li C (2004a) Quantifying the regional source strength of N-trace gases across agricultural and forest ecosystems with process based models. Plant Soil 260:311–329. doi: 10.1023/B:PLSO.0000030186.81212.fb Google Scholar
  8. Butterbach-Bahl K, Kock M, Willibald G, Hewett B, Buhagia S, Papen H, Kiese R (2004b) Temporal variations of fluxes of NO, NO2, N2O, CO2, and CH4 in a tropical rain forest ecosystem. Glob Biogeochem Cycles 18:GB3012. doi: 10.1029/2004GB002243
  9. Butterbach-Bahl K, Kahl M, Mykhayliv L, Werner C, Kiese R, Li C (2009) A European-wide inventory of soil NO emissions using the biogeochemical models DNDC/Forest-DNDC. Atmos Environ 43:1392–1402. doi: 10.1016/j.atmosenv.2008.02.008 Google Scholar
  10. Chatskikh D, Olesen JE, Berntsen J, Regina K, Yamulki S (2005) Simulation of effects of soils, climate and management on N2O emission from grasslands. Biogeochemistry 76:395–419. doi: 10.1007/s10533-005-6996-8 Google Scholar
  11. Chirinda N, Kracher D, Lægdsmand M, Porter JR, Olesen JE, Petersen BM, Doltra J, Kiese R, Butterbach-Bahl K (2011) Simulating soil N2O emissions and heterotrophic CO2 respiration in arable systems using FASSET and MoBiLE-DNDC. Plant Soil 343:251–260. doi: 10.1007/s11104-010-0596-7 Google Scholar
  12. Cicerone RJ, Shetter JD (1981) Sources of atmospheric methane: measurements in rice paddies and a discussion. J Geophys Res 86:7203–7209. doi: 10.1029/JC086iC08p07203 CrossRefGoogle Scholar
  13. Conant RT (2011) Sequestration through forestry and agriculture. Wires Clim Chang 2:238–254. doi: 10.1002/wcc.101 CrossRefGoogle Scholar
  14. Cui J, Li C, Sun G, Trettin C (2005) Linkage of MIKE SHE to wetland-DNDC for carbon budgeting and anaerobic biogeochemistry simulation. Biogeochemistry 72:147–167. doi: 10.1007/s10533-004-0367-8 CrossRefGoogle Scholar
  15. Dämmgen U (2007) Calculations of Emissions from German Agriculture—National Emission Inventory Report (NIR) 2007 for 2005, FAL Agricultural Research. Landbauforschung Völkenrode, Institut für Agrarrelevante Klimaforschung Johann Heinrich von Thünen Institut (vTI) Bundesforschungsinstitut für Ländliche Räume, Wald und FischereiGoogle Scholar
  16. Dämmgen U, Grünhage L (2002) Trace gas emissions from German agriculture as obtained from the application of simpler or default methodologies. Environ Pollut 117:23–34PubMedCrossRefGoogle Scholar
  17. de Noblet-Ducoudre N, Gervois S, Ciais P, Viovy N, Brisson N, Seguin B, Perrier A (2004) Coupling the soil-vegetation-atmosphere-transfer scheme ORCHIDEE to the agronomy model STICS to study the influence of croplands on the European carbon and water budgets. Agronomie 24:397–407Google Scholar
  18. Del Grosso SJ, Mosier AR, Parton WJ, Ojima DS (2005a) DAYCENT model analysis of past and contemporary soil N2O and net greenhouse gas flux for major crops in the USA. Soil Till Res 83:9–24. doi: 10.1016/j.still.2005.02.007 CrossRefGoogle Scholar
  19. Del Grosso SJ, Parton WJ, Mosier AR, Holland EA, Pendall E, Schimel DS, Ojima DS (2005b) Modeling soil CO2 emissions from ecosystems. Biogeochemistry 73:71–91. doi: 10.1007/s10533-004-0898-z Google Scholar
  20. Del Grosso SJ, Ogle SM, Parton WJ, Breidt FJ (2010) Estimating uncertainty in N2O emissions from US cropland soils. Glob Biogeochem Cycles 24:GB1009. doi: 10.1029/2009GB003544
  21. Firestone M, Davidson E (1989) Microbial basis of NO and N2O production and consumption. In: Andreae MO, Schimel DS (eds) Dahlem workshop on exchange of trace Gases between terrestrial ecosystems and the atmosphere. Dahlem Koferenzen, BerlinGoogle Scholar
  22. Fouilloux A, Piacentini A (1999) The PALM project: MPMD paradigm for an oceanic data assimilation software. Lect Notes Comput Sci. 1685:1423–1430Google Scholar
  23. Friend A, Schugart H, Running SW (1993) A physiology-based gap model of forest dynamics. Ecology 74:792–797CrossRefGoogle Scholar
  24. Gabrielle B, Laville P, Henault C, Nicoullaud B, Germon JC (2006) Simulation of nitrous oxide emissions from wheat-cropped soils using CERES. Nutr Cycl Agroecosys 74:133–146. doi: 10.1007/s10705-005-5771-5 Google Scholar
  25. Gervois S, Ciais P, de Noblet-Ducoudre N, Brisson N, Vuichard N, Viovy N (2008) Carbon and water balance of European croplands throughout the 20th century. Glob Biogeochem Cycles 22. doi: 10.1029/2007GB003018
  26. Grant RF, Pattey E (2003) Modelling variability in N2O emissions from fertilized agricultural fields. Soil Biol Biochem 35:225–243. doi: 10.1016/S0038-0717(02)00256-0 CrossRefGoogle Scholar
  27. Grant RF, Nyborg M, Laidlaw JW (1993) Evolution of nitrous oxide from soil. Soil Sci 156:259–265. doi: 10.1097/00010694-199310000-00006 Google Scholar
  28. Grote R (2007) Sensitivity of volatile monoterpene emission to changes in canopy structure: a model-based exercise with a process-based emission model. New Phytol 173:550–561. doi: 10.1111/j.1469-8137.2006.01946.x PubMedCrossRefGoogle Scholar
  29. Grote R, Kiese R, Grünwald T, Ourcival JM, Granier A (2011) Modelling forest carbon balances considering tree mortality and removal. Agric For Meteorol 151:179–190. doi: 10.1016/j.agrformet.2010.10.002 Google Scholar
  30. Grote R, Lehmann E, Brümmer C, Brüggemann N, Szarzynski J, Kunstmann H (2009) Modelling and observation of biosphere–atmosphere interactions in natural savannah in Burkina Faso, West Africa. Phys Chem Earth. doi: 10.1016/j.pce.2008.05.003
  31. Holst J, Grote R, Offermann C, Ferrio JP, Gessler A, Mayer H, Rennenberg H (2010) Water fluxes within beech stands in complex terrain. Int J Biometeorol 54:23–36. doi: 10.1007/s00484-009-0248-x Google Scholar
  32. Houghton RA, Hackler J (1999) Emissions of carbon from forestry and land-use change in tropical Asia. Glob Chang Biol 5:481–492CrossRefGoogle Scholar
  33. IPCC (2006) 2006 IPCC guidelines for national greenhouse gas inventories volume 4 agriculture, Forestry and other land use. Institute for Glob Environmental Strategies (IGES), on behalf of the IPCC, JapanGoogle Scholar
  34. IPCC (2007) Climate change 2007: the physical science basis—contribution of working group i to the fourth assessment report of the intergovernmental panel on climate change, p 996Google Scholar
  35. IPCC (2000) IPCC special report: land use, land-use change, and forestry. Cambridge University Press, CambridgeGoogle Scholar
  36. Kaharabata SK (2003) Comparing measured and Expert-N predicted N2O emissions from conventional till and no till corn treatments. Nutr Cycl Agroecosys 66:107–118. doi: 10.1023/A:1023978830307 CrossRefGoogle Scholar
  37. Kemanian AR, Julich S, Manoranjan VS, Arnold JR (2011) Integrating soil carbon cycling with that of nitrogen and phosphorus in the watershed model SWAT: theory and model testing. Ecol Model 222:1913–1921. doi: 10.1016/j.ecolmodel.2011.03.017 CrossRefGoogle Scholar
  38. Kesik M, Ambus P, Baritz R, Brüggemann NB, Butterbach-Bahl K, Damm M, Duyzer J, Horvath L, Kiese R, Kitzler B, Leip A, Li C, Pihlatie M, Pilegaard K, Seufert G, Simpson D, Skiba U, Smiatek G, Vesala T, Zechmeister-Boltenstern S (2005) Inventories of N2O and NO emissions from European forest soils. Biogeosciences 2:353–375Google Scholar
  39. Kiese R, Heinzeller C, Werner C, Wochele S, Grote R, Butterbach-Bahl K (2011) Quantification of nitrate leaching from German forest ecosystems by use of a process oriented biogeochemical model. Environ Pollut 159:3204–3214. doi: 10.1016/j.envpol.2011.05.004 Google Scholar
  40. Klier C, Gayler S, Haberbosch C, Ruser R, Stenger R, Flessa H, Priesack E (2011) Modeling nitrous oxide emissions from potato-cropped soil. Vadose Zone J 10:184. doi: 10.2136/vzj2009.0194
  41. Koomen E, Stillwell J, Bakema A, Scholten HJ (2008) Modelling land-use change, progress and applications. Springer, DordrechtGoogle Scholar
  42. Kraft P, Vaché KB, Frede H-G, Breuer L (2011) CMF: a hydrological programming language extension for integrated catchment models. Environ Modell Softw 26:828–830. doi: 10.1016/j.envsoft.2010.12.009 CrossRefGoogle Scholar
  43. Lehuger S, Gabrielle B, van Oijen M, Makowski D, Germon JC, Morvan T, Henault C (2009) Bayesian calibration of the nitrous oxide emission module of an agro-ecosystem model. Agr Ecosyst Environ 133:208–222. doi: 10.1016/j.agee.2009.04.022 Google Scholar
  44. Li C (2000) Modeling trace gas emissions from agricultural ecosystems. Nutr Cycl Agroecosys 58:259–276. doi: 10.1023/A:1009859006242 CrossRefGoogle Scholar
  45. Li C, Aber J, Stange F, Butterbach-Bahl K, Papen H (2000) A process-oriented model of N2O and NO emissions from forest soils: 1 model development. J Geophys Res-Atmos 105:4369–4384Google Scholar
  46. Li C, Frolking S, Butterbach-Bahl K (2005) Carbon sequestration in arable soils is likely to increase nitrous oxide emissions, offsetting reductions in climate radiative forcing. Clim Chang 72:321–338. doi: 10.1007/s10584-005-6791-5 CrossRefGoogle Scholar
  47. Li C, Frolking S, Frolking TA (1992) A model of nitrous-oxide evolution from soil driven by rainfall events. 1. Model structure and sensitivity. J Geophys Res 97:9759–9776. doi: 10.1029/92JD00509 CrossRefGoogle Scholar
  48. Mander Ü, Uuemaa E, Kull A, Kanal A, Maddison M, Soosaar K, Salm JO, Lesta M, Hansen R, Kuller R, Harding A, Augustin J (2010) Assessment of methane and nitrous oxide fluxes in rural landscapes. Landsc Urban Plan 98:172–181. doi: 10.1016/j.landurbplan.2010.08.021 Google Scholar
  49. Meinshausen M, Meinshausen N, Hare W, Raper SCB, Frieler K, Knutti R, Frame DJ, Allen MR (2009) Greenhouse-gas emission targets for limiting global warming to 2 degree C. Nature 458:1158–1162. doi: 10.1038/nature08017 Google Scholar
  50. Miehle P, Grote R, Battaglia M, Felkema PM, Arndt SK (2010) Evaluation of a process-based ecosystem model for long-term biomass and stand development of Eucalyptus globulus plantations. Eur J Forest Res 129:377–391. doi: 10.1007/s10342-009-0343-x
  51. Norman J, Jansson P-E, Farahbakhshazad N, Butterbach-Bahl C, Li C, Klemedtsson L (2008) Simulation of NO and N2O emissions from a spruce forest during a freeze/thaw event using an N-flux submodel from the PnET-N-DNDC model integrated to CoupModel. Ecol Model 216:18–30. doi: 10.1016/j.ecolmodel.2008.04.012
  52. Pohlert T, Huisman JA, Breuer L, Frede HG (2007) Integration of a detailed biogeochemical model into SWAT for improved nitrogen predictions—model development, sensitivity, and GLUE analysis. Ecol Model 203:215–228. doi: 10.1016/j.ecolmodel.2006.11.019 CrossRefGoogle Scholar
  53. Post J, Habeck A, Hattermann F, Krysanova V, Wechsung F, Suckow F (2007) Modelling water and nutrient dynamics in soil–crop systems. Springer, Müncheberg, 129–146. doi: 10.1007/978-1-4020-4479-3_10
  54. Roering J, Almond P, Tonkin P, McKean J (2004) Constraining climatic controls on hillslope dynamics using a coupled model for the transport of soil and tracers: application to loess-mantled hillslopes, South Island, New Zealand. J Geophys Res. doi: 10.1029/2003JF000034 Google Scholar
  55. Rolland M, Gabrielle B, Laville P, Cellier P, Beekmann M, Gilliot J-M, Michelin J, Hadjar D, Curci G (2010) High-resolution inventory of NO emissions from agricultural soils over the Ile-de-France region. Environ Pollut 158:711–722. doi: 10.1016/j.envpol.2009.10.017 Google Scholar
  56. Schmitter P, Dercon G, Hilger T, Hertel M, Treffner J, Lam N, Duc Vien T, Cadisch G (2011) Linking spatio-temporal variation of crop response with sediment deposition along paddy rice terraces. Agr Ecosyst Environ 140:34–45. doi: 10.1016/j.agee.2010.11.009 Google Scholar
  57. Schulze ED, Ciais P, Luyssaert S, Schrumpf M, Janssens IA, Thiruchittampalam B, Theloke J, Saurat M, Bringezu S, Lelieveld J, Lohila A, Rebmann C, Jung M, Bastviken D, Abril G, Grassi G, Leip A, Freibauer A, Kutsch W, Don A, Nieschulze J, Boerner A, Gash JH, Dolman AJ (2010) The European carbon balance. Part 4: integration of carbon and other trace-gas fluxes. Glob Chang Biol 16:1451–1469. doi: 10.1111/j.1365-2486.2010.02215.x
  58. Skiba U, Drewer J, Tang YS, van Dijk N, Helfter C, Nemitz E, Famulari D, Cape JN, Jones SK, Twigg M, Pihlatie M, Vesala T, Larsen KS, Carter MS, Ambus P, Ibrom A, Beier C, Hensen A, Frumau A, Erisman JW, Brüggemann N, Gasche R, Butterbach-Bahl K, Neftel A, Spirig C, Horvath L, Freibauer A, Cellier P, Laville P, Loubet B, Magliulo E, Bertolini T, Seufert G, Andersson M, Manca G, Laurila T, Aurela M, Lohila A, Zechmeister-Boltenstern S, Kitzler B, Schaufler G, Siemens J, Kindler R, Flechard C, Sutton MA (2009) Biosphere-atmosphere exchange of reactive nitrogen and greenhouse gases at the NitroEurope core flux measurement sites: measurement strategy and first data sets. Agr Ecosyst Environ 133:139–149Google Scholar
  59. Smith J, Gottschalk P, Bellarby J, Chapman S, Lilly A, Towers W, Bell J, Coleman K, Nayak D, Richards M, Hillier J, Flynn H, Wattenbach M, Aitkenhead M, Yeluripati J, Farmer J, Milne R, Thomson A, Evans C, Whitmore A, Falloon P, Smith P (2010) Estimating changes in Scottish soil carbon stocks using ECOSSE. I. Model description and uncertainties. Clim Res 45:179–192. doi: 10.3354/cr00899 Google Scholar
  60. Smith P, Martino D, Cai Z, Gwary D, Janzen H, Kumar P, McCarl B, Ogle S, O'Mara F, Rice C, Scholes B, Sirotenko O, Howden M, McAllister T, Pan G, Romanenkov V, Schneider U, Towprayoon S, Wattenbach M, Smith J (2008) Greenhouse gas mitigation in agriculture. Philos Trans R Soc Lond B Biol Sci 363:789–813. doi: 10.1098/rstb.2007.2184 Google Scholar
  61. Stange F, Butterbach-Bahl K, Papen H, Zechmeister-Boltenstern S, Li C, Aber J (2000) A process-oriented model of N2O and NO emissions from forest soils 2. Sensitivity analysis and validation. J Geophys Res-Atmos 105:4385–4398Google Scholar
  62. Sutton MA, Nemitz E, Erisman JW, Beier C, Butterbach-Bahl K, Cellier P, De Vries W, Cotrufo F, Skiba U, Di Marco C, Jones S, Laville P, Soussana J-F, Loubet B, Twigg M, Famulari D, Whitehead J, Gallagher MW, Neftel A, Flechard CR, Herrmann B, Calanca PL, Schjoerring JK, Dämmgen U, Horvath L, Tang YS, Emmett BA, Tietema A, Peñuelas J, Kesik M, Brüggemann N, Pilegaard K, Vesala T, Campbell CL, Olesen JE, Dragosits U, Theobald MR, Levy P, Mobbs DC, Milne R, Viovy N, Vuichard N, Smith JU, Smith P, Bergamaschi P, Fowler D, Reis S (2007) Challenges in quantifying biosphere–atmosphere exchange of nitrogen species. Environ Pollut 150:125–139. doi: 10.1016/j.envpol.2007.04.014 Google Scholar
  63. Van den Hoof C, Hanert E, Vidale PL (2011) Simulating dynamic crop growth with an adapted land surface model—JULES-SUCROS: model development and validation. Agric For Meteorol 151:137–153. doi: 10.1016/j.agrformet.2010.09.011 CrossRefGoogle Scholar
  64. Wassmann R, Papen H, Rennenberg H (1993) Methane emission from rice paddies and possible mitigation strategies. Chemosphere 26:201–217. doi: 10.1016/0045-6535(93)90422-2 CrossRefGoogle Scholar
  65. Werner C, Butterbach-Bahl K, Haas E, Hickler T, Kiese R (2007) A global inventory of N2O emissions from tropical rainforest soils using a detailed biogeochemical model. Glob Biogeochem Cycles 21. doi: 10.1029/2006GB002909
  66. Wolf B, Chen W, Brüggemann N, Zheng X, Pumpanen J, Butterbach-Bahl K (2010) Applicability of the soil gradient method for estimating soil–atmosphere CO2, CH4, and N2O fluxes for steppe soils in Inner Mongolia. J Plant Nutr Soil Sci 174:359–372. doi: 10.1002/jpln.201000150 Google Scholar
  67. Zaehle S, Sitch S, Smith B, Hatterman F (2005) Effects of parameter uncertainties on the modeling of terrestrial biosphere dynamics. Glob Biogeochem Cycles 19. doi: 10.1029/2004GB002395

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Edwin Haas
    • 1
    Email author
  • Steffen Klatt
    • 1
  • Alexander Fröhlich
    • 1
  • Philipp Kraft
    • 2
  • Christian Werner
    • 3
  • Ralf Kiese
    • 1
  • Rüdiger Grote
    • 1
  • Lutz Breuer
    • 2
  • Klaus Butterbach-Bahl
    • 1
  1. 1.Institute of Meteorology and Climate Research (IMK-IFU)Karlsruhe Institute of TechnologyGarmisch-PartenkirchenGermany
  2. 2.Institute for Landscape Ecology and Resources Management (ILR)Justus-Liebig-University GiessenGiessenGermany
  3. 3.Biodiversity and Climate Research Centre (BiK-F)FrankfurtGermany

Personalised recommendations