Integrating graph-based connectivity metrics into species distribution models

Abstract

Species distribution models (SDMs) are commonly used in ecology to map the probability of species occurrence on the basis of predictive factors describing the physical environment. We propose an improvement on SDMs by using graph methods to quantify landscape connectivity. After (1) mapping the habitat suitable for a given species, this approach consists in (2) building a landscape graph, (3) computing patch-based connectivity metrics, (4) extrapolating the values of those metrics to any point of space, and (5) integrating those connectivity metrics into a predictive model of presence. For a given species, this method can be used to interpret the significance of the metrics in the models in terms of population structure. The method is illustrated here by the construction of an SDM for the European tree frog in the region of Franche-Comté (France). The results show that the connectivity metrics improve the explanatory power of the SDM and emphasize the important role of the habitat network.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Armstrong DP (2005) Integrating the metapopulation and habitat paradigms for understanding broad-scale declines of species. Conserv Biol 19(5):1402–1410

    Article  Google Scholar 

  2. Arthur SM, Manly BFJ, McDonald LL, Garner GW (1996) Assessing habitat selection when availability changes. Ecology 77:215–227

    Article  Google Scholar 

  3. Austin MP (2002) Spatial prediction of species distribution: an interface between ecological theory and statistical modelling. Ecol Model 157:101–118

    Article  Google Scholar 

  4. Bodin O (2009) Prioritizing habitat patches for conservation in fragmented landscapes/townscapes using network-based models and analyses. In: Brebbia CA, Neophytou M, Beriatos E, Ioannou I, Kungolos AG (eds) Sustainable development and planning. Wit Press, Southampton, pp 109–118

    Google Scholar 

  5. Bodin O, Saura S (2010) Ranking individual habitat patches as connectivity providers: integrating network analysis and patch removal experiments. Ecol Model 221:2393–2405

    Article  Google Scholar 

  6. Borgatti SP (2005) Centrality and network flow. Soc Netw 27:55–71

    Article  Google Scholar 

  7. Borgula A (1993) Causes of the decline in Hyla arborea. In: Stumpel A, Tester U (eds) Ecology and conservation of the European tree frog, 1st international workshop on Hyla arborea, Postdam, February 1992, Schweizerischer Bund für Naturschutz, Basel, pp 71–80

  8. Bunn AG, Urban DL, Keitt TH (2000) Landscape connectivity: a conservation application of graph theory. J Environ Manag 59:265–278

    Article  Google Scholar 

  9. Calabrese JM, Fagan WF (2004) A comparison-shopper’s guide to connectivity metrics. Front Ecol Environ 2(10):529–536

    Article  Google Scholar 

  10. Carlson A, Edenhamn P (2000) Extinction dynamics and the regional persistence of a tree frog metapopulation. Proc R Soc Lond B 267:1311–1313

    Article  CAS  Google Scholar 

  11. Dale MRT, Fortin MJ (2010) From graphs to spatial graphs. Annu Rev Ecol Evol Syst 41:21–38

    Article  Google Scholar 

  12. Estrada E, Bodin O (2008) Using network centrality measures to manage landscape connectivity. Ecol Appl 18:1810–1825

    PubMed  Article  Google Scholar 

  13. Fahrig L, Grez AA (1996) Population spatial structure, human-caused landscape changes and species survival. Rev Chil Hist Nat 69(1):5–13

    Google Scholar 

  14. Fog K (1993) Migration in the tree frog Hyla arborea. In: Stumpel A, Tester U (eds) Ecology and conservation of the European tree frog. 1st international workshop on Hyla arborea, Potsdam, February 1992, Schweizerischer Bund für Naturschutz, Basel, pp 55–63

  15. Franklin J (2009) Mapping species distributions. Cambridge University Press, Cambridge

    Google Scholar 

  16. Galpern P, Manseau M, Fall A (2011) Patch-based graphs of landscape connectivity: a guide to construction, analysis and application for conservation. Biol Conserv 144:44–55

    Article  Google Scholar 

  17. Guisan A, Thuillier W (2005) Predicting species distribution: offering more than simple habitat models. Ecol Lett 8:993–1009

    Article  Google Scholar 

  18. Guisan A, Zimmermann NE (2000) Predictive habitat distribution models in ecology. Ecol Model 135:147–186

    Article  Google Scholar 

  19. Gustafson EJ, Parker GR (1994) Using an index of habitat patch proximity for landscape design. Landsc Urban Plan 29:117–130

    Article  Google Scholar 

  20. Hanski I, Ovaslaken O (2000) The metapopulation capacity of a fragmented landscape. Nature 404:755–758

    PubMed  Article  CAS  Google Scholar 

  21. Hirzel AH, Arlettaz R (2003) Modelling habitat suitability for complex species distributions by environmental-distance geometric mean. Environ Manag 32(5):614–623

    Article  Google Scholar 

  22. Hirzel AH, Le Lay G (2008) Habitat suitability modelling and niche theory. J Appl Ecol 45:1372–1381

    Article  Google Scholar 

  23. Hjermann DØ (2000) Analyzing habitat selection in animals without well-defined home ranges. Ecology 81:1462–1468

    Article  Google Scholar 

  24. Kindlmann P, Burel F (2008) Connectivity measures: a review. Landscape Ecol 23:879–890

    Google Scholar 

  25. Matthiopoulos J (2003) The use of space by animals as a function of accessibility and preference. Ecol Model 159:239–268

    Article  Google Scholar 

  26. Minor ES, Urban DL (2007) Graph theory as a proxy for spatially explicit population models in conservation planning. Ecol Appl 17:1771–1782

    PubMed  Article  Google Scholar 

  27. Minor SM, Urban DL (2008) A graph-theory framework for evaluating landscape connectivity and conservation planning. Conserv Biol 22:297–307

    PubMed  Article  Google Scholar 

  28. Moilanen A (2011) On the limitations of graph-theoretic connectivity in spatial ecology and conservation. J Appl Ecol. doi:10.1111/j.1365-2664.2011.02062.x

    Google Scholar 

  29. Pellet J, Hoehn S, Perrin N (2004) Multiscale determinants of tree frog (Hyla arborea L.) calling ponds in western Switzerland. Biodivers Conserv 13:2227–2235

    Article  Google Scholar 

  30. Pinston H (2000) Amphibiens et Reptiles de Franche-Comté. Atlas commenté de Répartition. Conseil Régional de Franche-Comté, Besançon

    Google Scholar 

  31. Pulliam HR (1988) Sources, sinks and, population regulation. Am Nat 132:652–661

    Article  Google Scholar 

  32. Richard Y, Armstrong DP (2010) The importance of integrating landscape ecology in habitat models: isolation-driven occurrence of north island robins in a fragmented landscape. Landscape Ecol 25:1363–1374

    Article  Google Scholar 

  33. Saura S, Pascual-Hortal L (2007) A new habitat availability index to integrate connectivity in landscape conservation planning: comparison with existing indices and application to a case study. Landsc Urban Plan 83:91–103

    Article  Google Scholar 

  34. Tscharntke T, Klein AM, Kruess A, Steffan-Dewenter I, Thies C (2005) Landscape perspectives on agricultural intensification and biodiversity–ecosystem service management. Ecol Lett 8:857–874

    Article  Google Scholar 

  35. Urban DL, Keitt TH (2001) Landscape connectivity: a graph theoretic approach. Ecology 82:1205–1218

    Article  Google Scholar 

  36. Urban DL, Minor ES, Treml EA, Schick RS (2009) Graph models of land mosaics. Ecol Lett 12:260–273

    PubMed  Article  Google Scholar 

  37. Vos C, Stumpel AHP (1995) Comparison of habitat-isolation parameters in relation to fragmented distribution patterns in the tree frog (Hyla arborea). Landscape Ecol 11:203–214

    Article  Google Scholar 

  38. Wright KA (1943) Isolation by distance. Genetics 28:114–138

    PubMed  CAS  Google Scholar 

  39. Zetterberg A, Mörtberg UM, Balfors B (2010) Making graph theory operational for landscape ecological assessments, planning, and design. Landsc Urban Plan 95:181–191

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Timothy Keitt and two anonymous reviewers for their valuable comments. This research is funded by the French Ministry of Ecology, Energy, Sustainable Development and the Sea (ITTECOP program) as part of the Graphab project managed by the USR 3124 MSHE Ledoux. Computations were performed on the supercomputer facilities of the “Mésocentre de calcul de FrancheComté”. We thank Raanan Barzel and Christopher Sutcliffe for reviewing the English manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jean-Christophe Foltête.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Foltête, JC., Clauzel, C., Vuidel, G. et al. Integrating graph-based connectivity metrics into species distribution models. Landscape Ecol 27, 557–569 (2012). https://doi.org/10.1007/s10980-012-9709-4

Download citation

Keywords

  • Graph theory
  • Fragmented habitat
  • Metapopulation
  • Landscape connectivity
  • Landscape metric
  • Predictive model