Landscape Ecology

, 26:1071 | Cite as

Reconstructing the collapse of wetland networks in the Swiss lowlands 1850–2000

Research Article

Abstract

In Central Europe vast wetland areas have been converted into agricultural land over the past few centuries. Long-term spatially explicit reconstructions of wetland cover changes at regional scale are rare but such information is vital for setting appropriate wetland conservation and restoration goals. In this study wetland cover change over the past 150 years was analyzed for the Canton Zurich (Switzerland) using information from historical and current topographical maps. Mapping instructions changed significantly over time, i.e., wetlands were mapped more conservatively on older maps. Therefore a technique was developed to account for changes in mapping instructions and to reconstruct a series of comparable maps spanning 1850–2000. Wetland cover dramatically decreased from 13,759 ha in 1850 (more than 8% of the total study area) to 1,233 ha in 2000 (less than 1%). Largest loss is observed for the first half of the twentieth century when more than 50% of the total wetland loss occurred. In 1850, almost all wetland patches were connected in two large networks defined by a 500 m buffer around all wetland patches to account for typical dispersal distances of wetland animals. Despite extensive wetland loss, this networks remained largely intact until 1950, but then collapsed into many medium and small networks consisting of only few wetland patches. In addition to the direct loss of wetland habitats increased habitat fragmentation is limiting metapopulation dynamics and hindering genetic exchange between populations. Amphibians and other wetland animals are particularly prone to habitat fragmentation because of their limited migration abilities. This may lead to time-delayed extinction in the future because current species occurrence might rather reflect historical than current wetland cover and habitat configuration. Future restoration efforts should focus on reestablishing connectivity between remaining smaller wetland networks.

Keywords

Connectivity Drainage Historical maps Landscape fragmentation Landscape history Land-use change Wetland loss 

References

  1. Allouche O, Steinitz O, Rotem D, Rosenfeld A, Kadmon R (2008) Incorporating distance constraints into species distribution models. J Appl Ecol 45:599–609CrossRefGoogle Scholar
  2. Angelone S, Holderegger R (2009) Population genetics suggests effectiveness of habitat connectivity measures for the European tree frog in Switzerland. J Appl Ecol 46:879–887CrossRefGoogle Scholar
  3. Begert M, Schlegel T, Kirchhofer W (2005) Homogenous temperature and precipitation series of Switzerland from 1864 to 2000. Int J Climatol 25:65–80CrossRefGoogle Scholar
  4. Beilman DW, MacDonald GM, Smith LC, Reimer PJ (2009) Carbon accumulation in peatlands of Western Siberia over the last 2000 years. Glob Biogeochem Cycles 23:GB1012CrossRefGoogle Scholar
  5. Bender DJ, Contreras TA, Fahrig L (1998) Habitat loss and population decline: a meta-analysis of patch size effect. Ecology 79:517–533CrossRefGoogle Scholar
  6. Bertiller R, Schwick C, Jaeger J (2007) Landschaftszerschneidung in der Schweiz: Zerschneidungsanalyse 1885–2002 und Folgerungen für die Verkehrs- und Raumplanung. ASTRA Bericht Nr. 1175, Bundesamt für Strassen, BernGoogle Scholar
  7. BFS Bundesamt für Statistik (1992) Bodeneignungskarte der Schweiz. NeuchâtelGoogle Scholar
  8. BFS Bundesamt für Statistik (2001) Arealstatistik der Schweiz 1992/1997. NeuchâtelGoogle Scholar
  9. Bolliger J, Schulte LA, Burrows SN, Sickley TA, Mladenoff DJ (2004) Assessing ecological restoration potentials of Wisconsin (U.S.A.) using historical landscape reconstructions. Restor Ecol 12:124–142CrossRefGoogle Scholar
  10. Boughton EH, Quintana-Ascencio PF, Bohlen PJ, Jenkins DG, Pickert R (2010) Land-use and isolation interact to affect wetland plant assemblages. Ecography 33:461–470Google Scholar
  11. Boyce MS, Vernier PR, Nielsen SE, Schmiegelow FKA (2002) Evaluating resource selection functions. Ecol Model 157:281–300CrossRefGoogle Scholar
  12. Bürgi M, Gimmi U (2007) Three objectives of historical ecology: the case of litter collecting in Central European forests. Landscape Ecol 22:77–87CrossRefGoogle Scholar
  13. Chefaoui RM, Hortal J, Lobo JM (2005) Potential distribution modeling, niche characterization and conservation status assessment using GIS tools: a case study of Iberian Copris species. Biol Conserv 122:327–338CrossRefGoogle Scholar
  14. Chin KS, Taylor PD (2009) Interactive effects of distance and matrix on the movements of a peatland dragonfly. Ecography 32:715–732CrossRefGoogle Scholar
  15. Clymo RS, Turunen J, Tolonen K (1998) Carbon accumulation in peatland. Oikos 81:368–388CrossRefGoogle Scholar
  16. DiGiulio M, Holderegger R, Tobias S (2009) Effects of habitat and landscape fragmentation on humans and biodiversity in densely populated landscapes. J Environ Manag 90:2959–2968CrossRefGoogle Scholar
  17. Egan D, Howell EA (2001) The historical ecology handbook. Island Press, Washington, DCGoogle Scholar
  18. Ewald KC, Klaus G (2010) Die ausgewechselte Landschaft. Vom Umgang der Schweiz mit ihrer wichtigsten natürlichen Ressource. Verlag Haupt, BernGoogle Scholar
  19. Fahrig L (2003) Effects of habitat fragmentation on biodiversity. Annu Rev Ecol Evol Syst 34:487–515CrossRefGoogle Scholar
  20. Gagné SA, Fahrig L (2007) Effect of landscape context on anuran communities in breeding ponds in the National Capital region, Canada. Landscape Ecol 22:205–215CrossRefGoogle Scholar
  21. Gibbs JP (2000) Wetland loss and biodiversity conservation. Conserv Biol 14:314–317CrossRefGoogle Scholar
  22. Gibbs JP, Whiteleather KK, Schueler FW (2005) Changes in frog and toad populations over 30 years in New York State. Ecol Appl 15:1148–1157CrossRefGoogle Scholar
  23. Gimmi U, Stuber M, Bürgi M (2008) Reconstructing anthropogenic disturbance regimes in forest ecosystems: a case study from the Swiss Rhone valley. Ecosystems 11:113–124CrossRefGoogle Scholar
  24. Grosjean G (1996) Geschichte der Kartographie. Geographisches Institut der Universität Bern, BernGoogle Scholar
  25. Grossinger RM, Striplen CJ, Askevold RA, Brewster E, Beller EE (2007) Historical landscape ecology of an urbanized California valley: wetlands and woodlands in the Santa Clara valley. Landscape Ecol 22:103–120CrossRefGoogle Scholar
  26. Grünig A (ed) (1994) Mires and man: mire conservation in a densely populated country—the Swiss experience. Swiss Federal Institute for Forest, Snow and Landscape Research, BirmensdorfGoogle Scholar
  27. Gugerli D, Speich D (2002) Topographien der Nation. Politik, kartographische Ordnung und Landschaft im 19. Jahrhundert. Chronos Verlag, ZürichGoogle Scholar
  28. Gustafson EJ, Gardner RH (1996) The effect of landscape heterogeneity on the probability of patch colonization. Ecology 77:94–107CrossRefGoogle Scholar
  29. Hamer AJ, McDonnell MJ (2008) Amphibian ecology and conservation in the urbanizing world: a review. Biol Conserv 141:2432–2449CrossRefGoogle Scholar
  30. Hantke R (1980) Eiszeitalter: Die jüngste Erdgeschichte der Schweiz und ihrer Nachbargebiete. Ott, ThunGoogle Scholar
  31. Hirzel AH, Hausser J, Chesse lD, Perrin N (2002) Ecological-niche factor analysis: how to compute habitat-suitability maps without absence data? Ecology 83:2027–2036CrossRefGoogle Scholar
  32. Hirzel AH, Le Lay G, Helfer V, Randin C, Guisan A (2006) Evaluating the ability of habitat suitability models to predict species presences. Ecol Model 199:142–152CrossRefGoogle Scholar
  33. Janssens IA, Freibauer A, Schlamadinger B, Ceuelmans R, Ciais P, Dolman AJ, Heiman M, Nabuurs GJ, Smith P, Valentini R, Schulze ED (2005) The carbon budget of terrestrial ecosystems at country-scale—a European case study. Biogeosciences 2:15–26CrossRefGoogle Scholar
  34. Kienast F (1993) Analysis of historic landscape patterns with a Geographical Information System—a methodological outline. Landscape Ecol 8:103–118CrossRefGoogle Scholar
  35. Kindlmann P, Burel F (2008) Connectivity measures: a review. Landscape Ecol 23:879–890Google Scholar
  36. Klaus G (ed) (2007) Zustand und Entwicklung der Moore in der Schweiz. Ergebnisse der Erfolgskontrolle Moorschutz. Umweltzustand Nr. 0730. Bundesamt für Umwelt, BernGoogle Scholar
  37. Küster H (1999) Geschichte der Landschaft in Mitteleuropa: von der Eiszeit bis zur Gegenwart. Beck, MünchenGoogle Scholar
  38. Lachat T, Bütler R (2009) Identifying conservation and restoration priorities for saproxylic and old-growth forest species: a case study in Switzerland. Environ Manag 44:105–118CrossRefGoogle Scholar
  39. Levin N, Elron E, Gasith A (2009) Decline of ecosystems in the coastal plain of Israel during the 20th century: implications for wetland conservation and management. Landsc Urban Plan 92:220–232CrossRefGoogle Scholar
  40. Li H, Wu J (2004) Use and misuse of landscape indices. Landscape Ecol 19:389–399CrossRefGoogle Scholar
  41. Lienert J, Fischer M (2003) Habitat fragmentation affects the common wetland specialist Primula farinosa in north-east Switzerland. J Ecol 91:587–599CrossRefGoogle Scholar
  42. Lienert J, Diemer M, Schmid B (2002) Effects of habitat fragmentation on population structure and fitness components of wetland specialist Swertia perennis L. (Gentianaceae). Basic Appl Ecol 3:101–114CrossRefGoogle Scholar
  43. Lopez RD, Davies CB, Fennessy MS (2002) Ecological relationships between landscape change and plant guilds in depressional wetlands. Landscape Ecol 17:43–56CrossRefGoogle Scholar
  44. Ludwig T, Storch I, Graf RF (2009) Historic landscape change and habitat loss: the case of black grouse in Lower Saxony, Germany. Landscape Ecol 24:533–546CrossRefGoogle Scholar
  45. MacArthur R, Wilson E (1967) The theory of island biogeography. Princeton University Press, PrincetonGoogle Scholar
  46. Manies KL, Mladenoff DJ, Hordheim EV (2001) Assessing large-scale surveyor variability in the historic forest data of the original US Public Land Survey. Can J For Res 31:1719–1730CrossRefGoogle Scholar
  47. Mitch W, Gosselink J (2000) Wetlands. Wiley, New YorkGoogle Scholar
  48. Moser M, Prentice C, Frazier S (1996) A global overview of wetland loss and degradation. In: Proceedings to the 6th meeting of the conference of contracting parties of the Ramsar Convention, vol 10Google Scholar
  49. Ricketts TH (2001) The matrix matters: effective isolation in fragmented landscapes. Am Nat 158:87–99PubMedCrossRefGoogle Scholar
  50. Sanderson EW, Brown M (2007) Mannahatta: an ecological first look at the Manhattan landscape prior to Henry Hudson. Northeast Nat 14:545–570CrossRefGoogle Scholar
  51. Smith MA, Green DM (2005) Dispersal and metapopulation paradigm in amphibian ecology and conservation: are all amphibian populations metapopulations? Ecography 28:110–128CrossRefGoogle Scholar
  52. Stein ED, Dark S, Longcore T, Grossinger R, Hall N, Beland M (2010) Historical ecology as a tool for assessing landscape change and informing wetland restoration priorities. Wetlands 30:589–601CrossRefGoogle Scholar
  53. Tilman D, May RM, Lehman CL, Nowak MA (1994) Habitat destruction and the extinction debt. Nature 371:65–66CrossRefGoogle Scholar
  54. Torbick NM, Qi J, Roloff GJ, Stevenson RJ (2006) Investigating impacts of land-use land cover change on wetlands in the Muskegon River watershed, Michigan USA. Wetlands 26:1103–1113CrossRefGoogle Scholar
  55. Van Dyke E, Wasson K (2005) Historical ecology of a central California estuary: 150 years of habitat change. Estuaries 28:173–189CrossRefGoogle Scholar
  56. Wulf M, Sommer M, Schmidt R (2010) Forest cover changes in the Prignitz region (NE Germany) between 1790 and 1960 in relation to soils and other driving forces. Landscape Ecol 25:299–313CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Research Unit Landscape DynamicsSwiss Federal Research Institute WSLBirmensdorfSwitzerland
  2. 2.Swiss Biodiversity Forum, SCNATBernSwitzerland
  3. 3.Research Unit Forest DynamicsSwiss Federal Research Institute WSLBirmensdorfSwitzerland

Personalised recommendations