Skip to main content
Log in

Spatial prediction of caterpillar (Ormiscodes) defoliation in Patagonian Nothofagus forests

  • Research Article
  • Published:
Landscape Ecology Aims and scope Submit manuscript

Abstract

In the temperate forests of the southern Andes, southern beech species (Nothofagus), the dominant tree species of the region, experience severe defoliation caused by caterpillars of the Ormiscodes genus (Lepidoptera: Saturniidae). Despite the recent increase in defoliation frequency in some areas, there is no quantitative information on the spatial extent and dynamics of these outbreaks. This study examines the spatial patterns of O. amphimone outbreaks in relation to landscape heterogeneity. We mapped defoliation events caused by O. amphimone in northern (ca. 40–41°S) and southern Patagonian (ca. 49°S) Nothofagus forests from Landsat imagery and analyzed their spatial associations with vegetation cover type, topography (elevation, slope angle, aspect) and mean annual precipitation using overlay analyses. We used these data and relationships to develop a logistic regression model in order to generate maps of predicted susceptibility to defoliation by O. amphimone for each study area. Forests of N. pumilio are typically more susceptible to O. amphimone outbreaks than lower elevation forests of other Nothofagus species (N. dombeyi and N. antarctica). Stands located at intermediate elevations and on gentle slopes (<15°) are also more susceptible to defoliation than higher and lower elevation stands located on high angle slopes. Stands in areas with intermediate to high precipitation, relative to the distribution of Nothofagus along the precipitation gradient, are more susceptible to O. amphimone attack than are drier areas. Our study represents the first mapping and spatial analysis of insect defoliator outbreaks in Nothofagus forests in South America.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig 3

Similar content being viewed by others

References

  • Aravena JC, Luckman BH (2009) Spatio-temporal rainfall patterns in southern South America. Int J Climatol 29:2106–2120

    Article  Google Scholar 

  • Baldini A, Alvarado A (2008) Manual de plagas y enfermedades del bosque nativo en Chile. Asistencia para la recuperación y revitalización de los bosques templados de Chile, con énfasis en los Nothofagus caducifolios. FAO/CONAF, Santiago de Chile

    Google Scholar 

  • Barros V, Cordón V, Moyano C, Méndez R, Forquera J, Pizzio O (1983) Cartas de precipitación de la zona oeste de las provincias de Río Negro y Neuquén. Report to the Facultad de Ciencias Agrarias, Universidad Nacional del Comahue, Cinco Saltos, Neuquén

  • Bauerle P, Rutherford P, Lanfranco D (1997) Defoliadores de roble (Nothofagus obliqua), raulí (N. alpina), coigue (N. dombeyi) y lenga (N. pumilio). Bosque 18:97–107

    Google Scholar 

  • Bebi P, Kulakowski D, Veblen TT (2003) Interactions between fire and spruce beetles in a subalpine Rocky Mountain forest landscape. Ecology 84:362–371

    Article  Google Scholar 

  • Bigler C, Kulakowski D, Veblen TT (2005) Multiple disturbance interactions and drought influence fire severity in rocky mountain subalpine forests. Ecology 86:3018–3029

    Article  Google Scholar 

  • Buckland ST, Elston DA (1993) Empirical-models for the spatial-distribution of wildlife. J Appl Ecol 30:478–495

    Article  Google Scholar 

  • Candau JN, Fleming RA (2005) Landscape-scale spatial distribution of spruce budworm defoliation in relation to bioclimatic conditions. Can J For Res 35:2218–2232

    Article  Google Scholar 

  • Carrillo R, Cerda L (1987) Zoofitofagos en Nothofagus chilenos. Bosque 8:99–103

    Google Scholar 

  • Cox GM, Gibbons JM, Wood ATA, Craigon J, Ramsden SJ, Crout NMJ (2006) Towards the systematic simplification of mechanistic models. Ecol Model 198:240–246

    Article  Google Scholar 

  • Davidson CB, Johnson JE, Gottschalk KW, Amateis RL (2001) Prediction of stand susceptibility and gypsy moth defoliation in Coastal Plain mixed pine-hardwoods. Can J For Res 31:1914–1921

    Google Scholar 

  • Dilts TE, Sibold JS, Biondi F (2009) A weights-of-evidence model for mapping the probability of fire occurrence in Lincoln County, Nevada. Ann Assoc Am Geogr 99:712–727

    Article  Google Scholar 

  • Eisenbies MH, Davidson C, Johnson J, Amateis R, Gottschalk K (2007) Tree mortality in mixed pine-hardwood stands defoliated by the European gypsy moth (Lymantria dispar L.). For Sci 53:683–691

    Google Scholar 

  • ESRI (2008) ArcGIS Version 9.3. Environmental Systems Research Institute, Inc. Redlands, CA

    Google Scholar 

  • Fielding AH, Bell JF (1997) A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ Conserv 24:38–49

    Article  Google Scholar 

  • Friedman JH (2006) Comment: classifier technology and the illusion of progress. Stat Sci 21:15–18

    Article  Google Scholar 

  • Guisan A, Zimmermann NE (2000) Predictive habitat distribution models in ecology. Ecol Model 135:147–186

    Article  Google Scholar 

  • Hertel D, Therburg A, Villalba R (2008) Above- and below-ground response by Nothofagus pumilio to climatic conditions at the transition from the steppe-forest boundary to the alpine tree-line in southern Patagonia, Argentina. Plant Ecol Div 1:21–33

    Article  Google Scholar 

  • Hosmer DW, Lemeshow S (2000) Applied logistic regression. Wiley, New York

    Book  Google Scholar 

  • Hurley A, Watts D, Burke B, Richards C (2004) Identifying gypsy moth defoliation in Ohio using Landsat data. Environ Eng Geosci 10:321–328

    Article  Google Scholar 

  • ITT (2007) ENVI version 4.4. Visual information solutions. ENVI, Boulder, CO

    Google Scholar 

  • Kharuk VI, Ranson KJ, Im ST (2009) Siberian silkmoth outbreak pattern analysis based on SPOT VEGETATION data. Int J Remote Sens 30:2377–2388

    Article  Google Scholar 

  • Lara A, Bran D, Rutherford P, Perez A, Clayton S, Barrios D, Ayesa J, Gross M, Iglesias G (1999) Mapeo de la Ecoregión de los Bosques Valdivianos de Argentina y Chile, en escala 1:500,000. Boletín Técnico FVSA No. 51. INTA-APN-UACh-FVSA-WWF

  • Leckie DG, Teillet PM, Ostaff DP, Fedosejevs G (1988) Sensor band selection for detecting current defoliation caused by the spruce budworm. Remote Sens Environ 26:31–50

    Article  Google Scholar 

  • Lemaire C (2002) The Saturniidae of America. Les Saturniidae Americains, Druckhaus Frankenbach, Lindenberg

    Google Scholar 

  • Lesaffre E, Marx BD (1993) Collinearity in generalized linear-regression. Commun Stat-Theory Methods 22:1933–1952

    Article  Google Scholar 

  • Lippitt CD, Rogan J, Toledano J, Sangermano F, Eastman JR, Mastro V, Sawyer A (2008) Incorporating anthropogenic variables into a species distribution model to map gypsy moth risk. Ecol Model 210:339–350

    Article  Google Scholar 

  • Magnussen S, Boudewyn P, Alfaro R (2004) Spatial prediction of the onset of spruce budworm defoliation. For Chron 80:485–494

    Google Scholar 

  • Mazía CN, Kitzberger T, Chaneton EJ (2004) Interannual changes in folivory and bird insectivory along a natural productivity gradient in northern Patagonian forests. Ecography 27:29–40

    Article  Google Scholar 

  • McGarigal K, Cushman S, Stafford S (2002) Multivariate statistics for wildlife and ecology research. Springer-Verlag, New York, NY

    Google Scholar 

  • McPherson JM, Jetz W, Rogers DJ (2004) The effects of species’ range sizes on the accuracy of distribution models: ecological phenomenon or statistical artefact? J Appl Ecol 41:811–823

    Article  Google Scholar 

  • Menard S (2002) Applied logistic regression analysis. Sage University papers series on quantitative applications in the social sciences 07-106, Thousand Oaks, CA

  • Mermoz M, Kitzberger T, Veblen TT (2005) Landscape influences on occurrence and spread of wildfires in Patagonian forests and shrublands. Ecology 86:2705–2715

    Article  Google Scholar 

  • Negron JF, McMillin JD, Anhold JA, Coulson D (2009) Bark beetle-caused mortality in a drought-affected ponderosa pine landscape in Arizona, USA. For Ecol Manage 257:1353–1362

    Article  Google Scholar 

  • Paritsis J (2009) Insect defoliator outbreaks and environmental heterogeneity in Nothofagus forests in the Patagonian Andes. University of Colorado, Boulder, CO

    Google Scholar 

  • Paritsis J, Veblen TT (2010) Temperature and foliage quality affect performance of the outbreak defoliator Ormiscodes amphimone (F.) (Lepidoptera: Saturniidae) in northwestern Patagonia, Argentina. Rev Ch His Nat 83:593–603

    Article  Google Scholar 

  • Paritsis J, Veblen TT (2011) Dendroecological analysis of defoliator outbreaks on Nothofagus pumilio and their relation to climate variability in the Patagonian Andes. Glob Change Biol 17:239–253

    Article  Google Scholar 

  • Paritsis J, Veblen TT, Kitzberger T (2009) Assessing dendroecological methods to reconstruct defoliator outbreaks on Nothofagus pumilio in northwestern Patagonia, Argentina. Can J For Res 39:1617–1629

    Article  Google Scholar 

  • Paritsis J, Elgueta M, Quintero C, Veblen TT (2010) New host-plant records for the defoliator Ormiscodes amphimone (Fabricius) (Lepidoptera: Saturniidae). Neotr Entom 39:1048–1050

    Article  Google Scholar 

  • Powers JS, Sollins P, Harmon ME, Jones JA (1999) Plant-pest interactions in time and space: a Douglas-fir bark beetle outbreak as a case study. Landscape Ecol 14:105–120

    Article  Google Scholar 

  • Queiro SM (2003) Report no. 39/03. Administración de Parques Nacionales. Parque Nacional Los Glaciares, Chaltén, Argentina

    Google Scholar 

  • Sherriff RL, Veblen TT (2007) A spatially explicit reconstruction of historical fire occurrence in the ponderosa pine zone of the Colorado Front Range. Ecosystems 9:1342–1347

    Google Scholar 

  • Veblen TT, Donoso C, Kitzberger T, Rebertus AJ (1996) Ecology of southern Chilean and Argentinean Nothofagus forests. In: Veblen TT, Hill RS, Read J (eds) The ecology and biogeography of Nothofagus forests. Yale University Press, New Haven, pp 293–353

    Google Scholar 

  • Veblen TT, Kitzberger T, Raffaele E, Mermoz M, González ME, Sibold JS, Holz A (2008) The historical range of variability of fires in the Andean-Patagonian Nothofagus forest region. Int J Wildland Fire 17:724–741

    Article  Google Scholar 

  • White JA, Whitham TG (2000) Associational susceptibility of cottonwood to a box elder herbivore. Ecology 81:1795–1803

    Article  Google Scholar 

Download references

Acknowledgments

We thank M. Mermoz from the National Park Service Administration for providing some of the Landsat images and other ancillary data. For useful advice while conducting the spatial analyses we thank S. Leyk. We are grateful to C. A. Wessman, T. A. Spies and an anonymous reviewer for useful suggestions and comments on earlier versions of this manuscript. This research was financially supported by the US National Science Foundation (Awards 0602164 and 096552) and a Beverly Sears Graduate Student Grant (Graduate School of the University of Colorado). The Argentinean National Park Service Administration granted permission to sample in the Nahuel Huapi and Los Glaciares National Parks. J. Paritsis was a Fulbright fellow while conducting part of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Paritsis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paritsis, J., Veblen, T.T., Smith, J.M. et al. Spatial prediction of caterpillar (Ormiscodes) defoliation in Patagonian Nothofagus forests. Landscape Ecol 26, 791–803 (2011). https://doi.org/10.1007/s10980-011-9608-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10980-011-9608-0

Keywords

Navigation