Skip to main content

Effects of land-use history and the contemporary landscape on non-native plant invasion at local and regional scales in the forest-dominated southern Appalachians

Abstract

Determining what factors explain the distribution of non-native invasive plants that can spread in forest-dominated landscapes could advance understanding of the invasion process and identify forest areas most susceptible to invasion. We conducted roadside surveys to determine the presence and abundance of 15 non-native plant species known to invade forests in western North Carolina, USA. Generalized linear models were used to examine how contemporary and historic land use, landscape context, and topography influenced presence and abundance of the species at local and regional scales. The most commonly encountered species were Microstegium vimineum, Rosa multiflora, Lonicera japonica, Celastrus orbiculatus, Ligustrum sinense, and Dioscorea oppositifolia. At the regional scale, distance to city center was the most important explanatory variable, with species more likely present and more abundant in watersheds closer to Asheville, NC. Many focal species were also more common in watersheds at lower elevation and with less forest cover. At the local scale, elevation was important for explaining the species’ presence, but forest cover and land-use history were more important for explaining their abundance. In general, species were more common in plots with less forest cover and more area reforested since the 1940s. Our results underscore the importance of considering both the contemporary landscape and historic land use to understand plant invasion in forest-dominated landscapes.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  • Albright TP, Anderson DP, Keuler NS, Pearson SM, Turner MG (2009) The spatial legacy of introduction: Celastrus orbiculatus in the southern Appalachians, USA. J Appl Ecol 46:1229–1238

    Google Scholar 

  • Alston KP, Richardson DM (2006) The roles of habitat features, disturbance, and distance from putative source populations in structuring alien plant invasions at the urban/wildland interface on the Cape Peninsula, South Africa. Biol Conserv 132:183–198

    Article  Google Scholar 

  • Bates D, Sarkar D (2006) lme4: Linear mixed-effects models using S4 classes. R package version 0.995-2

  • Beers TW, Dress PE, Wensel LC (1966) Aspect transformation in site productivity research. J For 64:691–692

    Google Scholar 

  • Brothers TS, Spingarn A (1992) Forest fragmentation and alien plant invasion of central Indiana old-growth forests. Conserv Biol 6:91–100

    Article  Google Scholar 

  • Brown KA, Spector S, Wu W (2008) Multi-scale analysis of species introductions: combining landscape and demographic models to improve management decisions about non-native species. J Appl Ecol 45:1639–1648

    Article  Google Scholar 

  • Buckley YM, Anderson S, Catterall CP, Corlett RT, Engel T, Gosper CR, Nathan R, Richardson DM, Setter M, Spiegel O, Vivian-Smith G, Voight FA, Weir JES, Westcott DA (2006) Management of plant invasions mediated by frugivore interactions. J Appl Ecol 43:848–857

    Article  Google Scholar 

  • Burnham KP, Anderson DR (1998) Model selection and inference: a practical information-theoretic approach. Springer, New York

    Google Scholar 

  • Carpenter RH (1970) Metamorphic history of the Blue Ridge province of Tennessee and North Carolina. Geol Soc Am Bull 81:749–761

    CAS  Article  Google Scholar 

  • Christen D, Matlack G (2006) The role of roadsides in plant invasions: a demographic approach. Conserv Biol 20:385–391

    Article  PubMed  Google Scholar 

  • Crawley MJ (1987) What makes a community invasible? In: Gray AJ, Crawley MJ, Edwards PJ (eds) Colonization, succession, and stability. Blackwell Scientific, Oxford, pp 429–453

    Google Scholar 

  • Davis MA, Grime JP, Thompson K (2000) Fluctuating resources in plant communities: a general theory of invasibility. J Ecol 88:528–534

    Article  Google Scholar 

  • DeGasperis BG, Motzkin G (2007) Windows of opportunity: historical and ecological controls on Berberis thunbergii invasions. Ecology 88:3115–3125

    Article  PubMed  Google Scholar 

  • Elton CS (1958) The ecology of invasions by animals and plants. University of Chicago Press, Chicago

    Google Scholar 

  • ESRI (2006) ArcGIS, vol. 9.1. Environmental Systems Research Institute, Redlands, CA

  • Forman RTT, Alexander LE (1998) Roads and their major ecological effects. Annu Rev Ecol Syst 29:207–231

    Article  Google Scholar 

  • Gelbard JL, Belnap J (2003) Roads as conduits for exotic plant invasions in a semiarid landscape. Conserv Biol 17:420–432

    Article  Google Scholar 

  • Gragson TL, Bolstad PV (2006) Land use legacies and the future of southern Appalachia. Soc Nat Resour 19:175–190

    Article  Google Scholar 

  • Hobbs RJ, Huenneke LF (1992) Disturbance, diversity, and invasion: implications for conservation. Conserv Biol 6:324–337

    Article  Google Scholar 

  • Horton JL, Neufeld HS (1998) Photosynthetic responses of Microstegium vimineum (Trin.) A. Camus, a shade-tolerant, C-4 grass, to variable light environments. Oecologia 114:11–19

    Article  Google Scholar 

  • Kitajima K (1994) Relative importance of photosynthetic traits and allocation patterns as correlates of seedling shade tolerance of 13 tropical trees. Oecologia 98:419–428

    Article  Google Scholar 

  • Knight KS, Reich PB (2005) Opposite relationships between invasibility and native species richness at patch versus landscape scales. Oikos 109:81–88

    Article  Google Scholar 

  • Kolar CS, Lodge DM (2001) Progress in invasion biology: predicting invaders. Trends Ecol Evol 16:199–204

    Article  PubMed  Google Scholar 

  • Kowarik I (2008) On the role of alien species in urban flora and vegetation. In: Marzluff JM, Shulenberger E, Endlicher W, Alberti M, Bradley G, Ryan C, ZumBrunnen C, Simon U (eds) Urban ecology: an international perspective on the interaction between humans and nature. Springer, New York, pp 321–338

    Google Scholar 

  • Leicht SA, Silander JA, Greenwood K (2005) Assessing the competitive ability of Japanese stilt grass, Microstegium vimineum (Trin.) A. Camus. J Torrey Bot Soc 132:573–580

    Article  Google Scholar 

  • Lonsdale WM (1999) Global patterns of plant invasions and the concept of invasibility. Ecology 80:1522–1536

    Article  Google Scholar 

  • Lundgren MR, Small CJ, Dreyer GD (2004) Influence of land use and site characteristics on invasive plant abundance in the Quinebaug Highlands of southern New England. North East Nat 11:313–332

    Article  Google Scholar 

  • Martin PH, Canham CD, Marks PL (2009) Why forests appear resistant to exotic plant invasions: intentional introductions, stand dynamics, and the role of shade tolerance. Front Ecol Environ 7:142–149

    Article  Google Scholar 

  • Parendes LA, Jones JA (2000) Role of light availability and dispersal in exotic plant invasion along roads and streams in the H. J. Andrews Experimental Forest, Oregon. Conserv Biol 14:64–75

    Article  Google Scholar 

  • Pinheiro JC, Bates DM (2000) Mixed-effects models in S and S-Plus. Springer, New York

    Book  Google Scholar 

  • Pysek P, Richardson D (2006) The biogeography of naturalization in alien plants. J Biogeogr 33:2040–2050

    Article  Google Scholar 

  • R Development Core Team (2008) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Reichard SH, White P (2001) Horticulture as a pathway of invasive plant introductions in the United States. Bioscience 51:103–113

    Article  Google Scholar 

  • Rejmánek M (1989) Invasibility of plant communities. In: Drake JA, diCastri F, Groves R (eds) Biological invasions: a global perspective. Wiley and Sons, Chichester, pp 369–388

    Google Scholar 

  • Rejmánek M, Richardson DM (1996) What attributes make some plant species more invasive? Ecology 77:1655–1661

    Article  Google Scholar 

  • Richardson DM, Allsopp N, D’Antonio CM, Milton SJ, Rejmánek M (2000) Plant invasions—the role of mutualisms. Biol Rev 75:65–93

    CAS  Article  PubMed  Google Scholar 

  • SAMAB (1996) The Southern Appalachian assessment summary report. U.S. Department of Agriculture Forest Service, Southern Region, Atlanta

  • Sanford NL, Harrington RA, Fownes JH (2003) Survival and growth of native and alien woody seedlings in open and understory environments. For Ecol Manage 183:377–385

    Article  Google Scholar 

  • Shea K, Chesson P (2002) Community ecology theory as a framework for biological invasions. Trends Ecol Evol 17:170–176

    Article  Google Scholar 

  • Stohlgren TJ, Chong GW, Schell LD, Rimar KA, Otsuki Y, Lee M, Kalkhan MA, Villa CA (2002) Assessing vulnerability to invasion by nonnative plant species at multiple spatial scales. Environ Manage 29:566–577

    Article  PubMed  Google Scholar 

  • Tikka PM, Hogmander H, Koski PS (2001) Road and railway verges serve as dispersal corridors for grassland plants. Landscape Ecol 16:659–666

    Article  Google Scholar 

  • Tilman D (1997) Community invasibility, recruitment limitation, and grassland biodiversity. Ecology 78:81–92

    Article  Google Scholar 

  • Turner MG, Pearson SM, Bolstad P, Wear DN (2003) Effects of land-cover change on spatial pattern of forest communities in the Southern Appalachian Mountains (USA). Landscape Ecol 18:449–464

    Article  Google Scholar 

  • Valladares F, Niinemets U (2008) Shade tolerance, a key plant feature of complex nature and consequences. Annu Rev Ecol Evol Syst 39:237–257

    Article  Google Scholar 

  • von der Lippe M, Kowarik I (2007) Long-distance dispersal of plants by vehicles as a driver of plant invasions. Conserv Biol 21:986–996

    Article  PubMed  Google Scholar 

  • Von Holle B, Motzkin G (2007) Historical land use and environmental determinants of nonnative plant distribution in coastal southern New England. Biol Conserv 136:33–43

    Article  Google Scholar 

  • Wear DN, Bolstad P (1998) Land-use changes in Southern Appalachian landscapes: spatial analysis and forecast evaluation. Ecosystems 1:575–594

    Article  Google Scholar 

  • Webb S, Dwyer M, Kaunzinger C, Wyckoff P (2000) The myth of the resilient forest: case study of the invasive Norway maple (Acer platanoides). Rhodora 102:332–354

    Google Scholar 

  • Wilson JB, Rapson GL, Sykes MT, Watkins AJ, Williams PA (1992) Distribution and climatic correlations of some exotic species along roadsides in South Island, New Zealand. J Biogeogr 19:183–193

    Article  Google Scholar 

  • Wilson JRU, Richardson DM, Rouget M, Proches S, Amis MA, Henderson L, Thuiller W (2007) Residence time and potential range: crucial considerations in modelling plant invasions. Divers Distrib 13:11–22

    Article  Google Scholar 

  • With KA (2002) The landscape ecology of invasive spread. Conserv Biol 16:1192–1203

    Article  Google Scholar 

Download references

Acknowledgements

This study was funded by the Long-term Ecological Research (LTER) Program of the National Science Foundation (DEB-0218001 and DEB-0823293, Coweeta LTER). We thank Ryan Kirk and the Paul Bolstad lab for assistance with map imagery. Thanks also to Rebecca Dellinger, Blaine Ellis, Matthew Hutchins, Nicholas Fabina, and Jared Nix for their hard work in the field and in the lab. Cécile Ane and Tony Ives provided helpful statistics advice and Tom Albright and Jen Fraterrigo provided valuable comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy R. Kuhman.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kuhman, T.R., Pearson, S.M. & Turner, M.G. Effects of land-use history and the contemporary landscape on non-native plant invasion at local and regional scales in the forest-dominated southern Appalachians. Landscape Ecol 25, 1433–1445 (2010). https://doi.org/10.1007/s10980-010-9500-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10980-010-9500-3

Keywords

  • Exotic species
  • Blue Ridge
  • Roads
  • City center
  • Microstegium vimineum
  • Rosa multiflora
  • Lonicera japonica
  • Celastrus orbiculatus
  • Ligustrum sinense
  • Dioscorea oppositifolia