Skip to main content

Uncertainty analysis as a tool for refining land dynamics modelling on changing landscapes: a case study in a Spanish Natural Park

Abstract

In this study we developed a methodology aimed at improving the assessment of inter-annual land cover dynamics from hard classified remotely sensed data in heterogeneous and resilient landscapes. The methodology is implemented for the Spanish Natural Park of Sierra de Ancares, where human interference during the last century has resulted in the destruction and fragmentation of the original land cover. We ran supervised classifications, with a maximum likelihood algorithm (Maxlike), on a temporal series of Landsat images (1991–2005), followed by an uncertainty assessment using fuzzy classifications and confusion indices (CIs). This allowed us to show how much (and where) of the resulting maps contained a substantial amount of error, distinguishing data that might be useful to measure land change from data that are not particularly useful when applying a post-classification comparison methodology. In this way, we can detect true changes not skewed by the effects of uncertainty. Even if patterns of change were always coherent amongst years, they were more realistic after reducing uncertainty, in spite of a substantial decrease in the number of available pixels (i.e. unmasked by the method). We then computed land cover dynamics by means of a model specifically designed to determine the frequency of disturbances (mainly fire events) and the vegetation recovery time during the study period. Model outputs showed correlated landscape patterns at a broad scale and provided useful results to explore land cover change from pattern to process.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  • Ahamed TRN, Rao KG, Murthy JSR (2000) GIS-based fuzzy membership model for crop-land suitability analysis. Agric Syst 63:75–95

    Article  Google Scholar 

  • Bradley BA, Mustard JF (2005) Identifying land cover variability distinct from land cover change: cheatgrass in the Great Basin. Remote Sens Environ 94:204–213

    Article  Google Scholar 

  • Burgi M, Hersperger AM, Schneeberger N (2004) Driving forces of landscape change—current and new directions. Landscape Ecol 19:857–868

    Article  Google Scholar 

  • Burnicki AC, Brown DG, Goovaerts P (2007) Simulating error propagation in land-cover change analysis: the implications of temporal dependence. Comput Environ Urban Syst 31:282–302

    Article  Google Scholar 

  • Burrough PA, vanGaans PFM, Hootsmans R (1997) Continuous classification in soil survey: spatial correlation, confusion and boundaries. Geoderma 77:115–135

    Article  Google Scholar 

  • Calvo L, Tarrega R, de Luis E (2002) Secondary succession after perturbations in a shrubland community. Acta Oecol Int J Ecol 23:393–404

    Article  Google Scholar 

  • Canters F (1997) Evaluating the uncertainty of area estimates derived from fuzzy land-cover classification. Photogramm Eng Remote Sens 63:403–414

    Google Scholar 

  • Carmel Y (2004) Characterizing location and classification error patterns in time-series thematic maps. Geosci Remote Sens Lett IEEE 1:11–14

    Article  Google Scholar 

  • Carmel Y, Dean DJ, Flather CD (2001) Combining location and classification error sources for estimating multi-temporal database accuracy. Photogramm Eng Remote Sens 67:865–872

    Google Scholar 

  • Carvalho dLMT, Clevers JGPW, Skidmore AK, Jong SMd (2004) Selection of imagery data and classifiers for mapping Brazilian semideciduous Atlantic forests. Int J Appl Earth Obs Geoinf 5:173–186

    Article  Google Scholar 

  • Cayuela L, Benayas JMR, Echeverria C (2006) Clearance and fragmentation of tropical montane forests in the Highlands of Chiapas, Mexico (1975–2000). For Ecol Manag 226:208–218

    Article  Google Scholar 

  • Chavez PS (1996) Image-based atmospheric corrections revisited and improved. Photogramm Eng Remote Sens 62:1025–1036

    Google Scholar 

  • Cherrill A, McClean C (1995) An investigation of uncertainty in field habitat mapping and the implications for detecting land cover change. Landscape Ecol 10:5–21

    Article  Google Scholar 

  • Chuvieco E (2000) Fundamentos de Teledetección espacial. EDICIONES RIALP, S.A., Madrid

    Google Scholar 

  • Conese C, Maselli F (1992) Use of error matrices to improve area estimates with maximum-likelihood classification procedures. Remote Sens Environ 40:113–124

    Article  Google Scholar 

  • Congalton RG (1991) A review of assessing the accuracy of classifications of remotely sensed data. Remote Sens Environ 37:35–46

    Article  Google Scholar 

  • Dai XL, Khorram S (1998) The effects of image misregistration on the accuracy of remotely sensed change detection. IEEE Trans Geosci Remote Sens 36:1566–1577

    Article  Google Scholar 

  • Díaz-Delgado R, Pons X (2001) Spatial patterns of forest fires in Catalonia (NE of Spain) along the period 1975–1995—analysis of vegetation recovery after fire. For Ecol Manag 147:67–74

    Article  Google Scholar 

  • Díaz-Delgado R, Lloret F, Pons X, Terradas J (2002) Satellite evidence of decreasing resilience in Mediterranean plant communities after recurrent wildfires. Ecology 83:2293–2303

    Google Scholar 

  • Díaz-Delgado R, Llorett F, Pons X (2003) Influence of fire severity on plant regeneration by means of remote sensing imagery. Int J Remote Sens 24:1751–1763

    Article  Google Scholar 

  • Duveiller G, Defourny P, Desclée B, Mayaux P (2008) Deforestation in Central Africa: estimates at regional, national and landscape levels by advanced processing of systematically-distributed Landsat extracts. Remote Sens Environ 115:1969–1981

    Article  Google Scholar 

  • Edwards G, Lowell KE (1996) Modeling uncertainty in photointerpreted boundaries. Photogramm Eng Remote Sens 62:377–391

    Google Scholar 

  • Foody GM (1996) Approaches for the production and evaluation of fuzzy land cover classifications from remotely-sensed data. Int J Remote Sens 17:1317–1340

    Article  Google Scholar 

  • Foody GM (2002) Status of land cover classification accuracy assessment. Remote Sens Environ 80:185–201

    Article  Google Scholar 

  • Fuller RM, Smith GM, Devereux BJ (2003) The characterisation and measurement of land cover change through remote sensing: problems in operational applications? Int J Appl Earth Obs Geoinf 4:243–253

    Article  Google Scholar 

  • Gautam AP, Webb EL, Shivakoti GP, Zoebisch MA (2003) Land use dynamics and landscape change pattern in a mountain watershed in Nepal. Agric Ecosyst Environ 99:83–96

    Article  Google Scholar 

  • Gil Sánchez C, Torre Antón M (2007) Atlas forestal de Castilla y León, Junta de Castilla y León. Consejería de Medio Ambiente, Valladolid

    Google Scholar 

  • Gilabert MA, Conese C, Maselli F (1994) An atmospheric correction method for the automatic retrieval of surface reflectances from TM images. Int J Remote Sens 15:2065–2086

    Article  Google Scholar 

  • ITACYL (2004) Instituto Tecnológico Agrario de Castilla y León (Technological and Agrarian Institute of the Regional Government of Castilla y León), Valladolid, Spain

  • Jakubauskas ME, Lulla K, Mausel PW (1990) Assessment of vegetation change in a fire-altered forest landscape. Photogramm Eng Remote Sens 56:371–377

    Google Scholar 

  • Janssen LLF, Van der Wel FJM (1994) Accuracy assessment of satellite derived land-cover data: a review. Photogramm Eng Remote Sens 60:419–426

    Google Scholar 

  • Kauth RJ, Thomas GS (1976) The tasseled cap. A graphic description of the spectral-temporal development of agricultural crops as seen by LANDSAT. In: Symposium on machine processing of remotely sensed data. Purdue University of West Lafayette, Indiana, pp 4B-41–44B-51

  • Lambin EF (1999) Monitoring forest degradation in tropical regions by remote sensing: some methodological issues. Glob Ecol Biogeogr 8:191–198

    Article  Google Scholar 

  • Lambin EF, Turner BL, Geist HJ, Agbola SB, Angelsen A, Bruce JW, Coomes OT, Dirzo R, Fischer G, Folke C, George PS, Homewood K, Imbernon J, Leemans R, Li XB, Moran EF, Mortimore M, Ramakrishnan PS, Richards JF, Skanes H, Steffen W, Stone GD, Svedin U, Veldkamp TA, Vogel C, Xu JC (2001) The causes of land-use and land-cover change: moving beyond the myths. Glob Environ Chang Hum Policy Dimens 11:261–269

    Google Scholar 

  • Langford W, Gergel S, Dietterich T, Cohen W (2006) Map misclassification can cause large errors in landscape pattern indices: examples from habitat fragmentation. Ecosystems 9:474–488

    Article  Google Scholar 

  • Lewis HG, Brown M, Tatnall ARL (2000) Incorporating uncertainty in land cover classification from remote sensing imagery. Remote Sens Land Surf Charact 26:1123–1126

    Google Scholar 

  • Lillesand TM, Kiefer RW, Chipman JW (2008) Remote sensing and image interpretation. Wiley, New York

    Google Scholar 

  • Liu CR, Frazier P, Kumar L (2007) Comparative assessment of the measures of thematic classification accuracy. Remote Sens Environ 107:606–616

    Article  Google Scholar 

  • Lloret F, Calvo E, Pons X, Díaz-Delgado R (2002) Wildfires and landscape patterns in the Eastern Iberian Peninsula. Landscape Ecol 17:745–759

    Article  Google Scholar 

  • Lozano FJ, Suárez-Seoane S, de Luis E (2007) Estudio comparativo de los regímenes de fuego en tres espacios naturales protegidos del oeste peninsular mediante imágenes Landsat. Revista Española de Teldetección 26:77–86

    Article  Google Scholar 

  • Lozano FJ, Suarez-Seoane S, Kelly M, Luis E (2008) A multi-scale approach for modeling fire occurrence probability using satellite data and classification trees: a case study in a mountainous Mediterranean region. Remote Sens Environ 112:708–719

    Article  Google Scholar 

  • Lozano FJ, Suarez-Seoane S, Luis E (2010) Effects of wildfires on environmental variability: a comparative analysis using different spectral indices, patch metrics and thematic resolutions. Landscape Ecol 25:697–710

    Article  Google Scholar 

  • MacDonald D, Crabtree JR, Wiesinger G, Dax T, Stamou N, Fleury P, Gutierrez Lazpita J, Gibon A (2000) Agricultural abandonment in mountain areas of Europe: environmental consequences and policy response. J Environ Manag 59:47–69

    Article  Google Scholar 

  • Markham BL, Barker JL (1987) Radiometric properties of United-States processed landsat MSS data. Remote Sens Environ 22:39–71

    Article  Google Scholar 

  • Martin ME, Newman SD, Aber JD, Congalton RG (1998) Determining forest species composition using high spectral resolution remote sensing data. Remote Sens Environ 65:249–254

    Article  Google Scholar 

  • Metternicht GI (2003) Categorical fuzziness: a comparison between crisp and fuzzy class boundary modelling for mapping salt-affected soils using Landsat TM data and a classification based on anion ratios. Ecol Model 168:371–389

    Article  CAS  Google Scholar 

  • Moran MS, Jackson RD, Slater PN, Teillet PM (1992) Evaluation of simplified procedures for retrieval of land surface reflectance factors from satellite sensor output. Remote Sens Environ 41:169–184

    Article  Google Scholar 

  • Ninyerola M, Pons X, Roure JM (2005) Atlas Climático Digital de la Península Ibérica. Metodología y aplicaciones en bioclimatología y geobotánica. Universidad Autónoma de Barcelona, Bellaterra. ISBN 932860-8-7

    Google Scholar 

  • Owen SM, MacKenzie AR, Bunce RGH, Stewart HE, Donovan RG, Stark G, Hewitt CN (2006) Urban land classification and its uncertainties using principal component and cluster analyses: a case study for the UK West Midlands. Landscape Urban Plan 78:311–321

    Article  Google Scholar 

  • Pala V, Pons X (1995) Incorporation of relief in polynomial-based geometric corrections. Photogramm Eng Remote Sens 61:935–944

    Google Scholar 

  • Pontius RG, Lippitt CD (2006) Can error explain map differences over time? Cartogr Geogr Inf Sci 33:159–171

    Article  Google Scholar 

  • Pontius RG, Shusas E, McEachern M (2004) Detecting important categorical land changes while accounting for persistence. Agric Ecosyst Environ 101:251–268

    Article  Google Scholar 

  • Pressey RL, Cabeza M, Watts ME, Cowling RM, Wilson KA (2007) Conservation planning in a changing world. Trends Ecol Evol 22:583–592

    Article  PubMed  Google Scholar 

  • Rees WG, Williams M, Vitebsky P (2003) Mapping land cover change in a reindeer herding area of the Russian Arctic using Landsat TM and ETM+ imagery and indigenous knowledge. Remote Sens Environ 85:441–452

    Article  Google Scholar 

  • Rey Benayas JM, Martins A, Nicolau JM, Schulz JJ (2007) Abandonment of agricultural land: an overview of drivers and consequences. In: CAB reviews: perspectives in agriculture, veterinary science, nutrition and natural resources, vol 2, 57, pp 1–14

  • Riaño D, Chuvieco E, Salas J, Aguado I (2003) Assessment of different topographic corrections in Landsat-TM data for mapping vegetation types. IEEE Trans Geosci Remote Sens 41:1056–1061

    Article  Google Scholar 

  • Roder A, Hill J, Duguy B, Alloza JA, Vallejo R (2008) Using long time series of Landsat data to monitor fire events and post-fire dynamics and identify driving factors. A case study in the Ayora region (eastern Spain). Remote Sens Environ 112:259–273

    Article  Google Scholar 

  • Rogan J, Franklin J, Roberts DA (2002) A comparison of methods for monitoring multitemporal vegetation change using thematic mapper imagery. Remote Sens Environ 80:143–156

    Article  Google Scholar 

  • Rouse JW, Haas RH, Schell JA, Deering DW (1973) Monitoring vegetation systems in the Great Plains with ERTS. In: NASA (ed) Third ERTS symposium, pp 309–317

  • Roy DP (2000) The impact of misregistration upon composited wide field of view satellite data and implications for change detection. IEEE Trans Geosci Remote Sens 38:2017–2032

    Article  Google Scholar 

  • Serra P, Pons X, Saurí D (2008) Land-cover and land-use change in a Mediterranean landscape: a spatial analysis of driving forces integrating biophysical and human factors. Appl Geogr 28:189–209

    Article  Google Scholar 

  • Shalaby A, Tateishi R (2007) Remote sensing and GIS for mapping and monitoring land cover and land-use changes in the northwestern coastal zone of Egypt. Appl Geogr 27:28–41

    Article  Google Scholar 

  • Shao G, Wu J (2008) On the accuracy of landscape pattern analysis using remote sensing data. Landscape Ecol 23:505–511

    Article  Google Scholar 

  • Steele BM, Winne JC, Redmond RL (1998) Estimation and mapping of misclassification probabilities for thematic land cover maps. Remote Sens Environ 66:192–202

    Article  Google Scholar 

  • Stehman SV (1997) Selecting and interpreting measures of thematic classification accuracy. Remote Sens Environ 62:77–89

    Article  Google Scholar 

  • Stehman SV, Czaplewski RL (1998) Design and analysis for thematic map accuracy assessment: fundamental principles. Remote Sens Environ 64:331–344

    Article  Google Scholar 

  • Stoorvogel JJ, Antle JM (2001) Regional land use analysis: the development of operational tools. Agric Syst 70:623–640

    Article  Google Scholar 

  • Story M, Congalton RG (1986) Accuracy assessment—a users perspective. Photogramm Eng Remote Sens 52:397–399

    Google Scholar 

  • Stow DA (1999) Reducing the effects of misregistration on pixel-level change detection. Int J Remote Sens 20:2477–2483

    Article  Google Scholar 

  • Tapia R, Stein A, Bijker W (2005) Optimization of sampling schemes for vegetation mapping using fuzzy classification. Remote Sens Environ 99:425–433

    Article  Google Scholar 

  • Teillet PM (1986) Image correction for radiometric effects in remote-sensing. Int J Remote Sens 7:1637–1651

    Article  Google Scholar 

  • Thomlinson JR, Bolstad PV, Cohen WB (1999) Coordinating methodologies for scaling landcover classifications from site-specific to global: steps toward validating global map products. Remote Sens Environ 70:16–28

    Article  Google Scholar 

  • Treitz P, Rogan J (2004) Remote sensing for mapping and monitoring land-cover and land-use change—an introduction. Prog Plan 61:269–279

    Article  Google Scholar 

  • Triepke FJ, Brewer CK, Leavell DM, Novak SJ (2008) Mapping forest alliances and associations using fuzzy systems and nearest neighbor classifiers. Remote Sens Environ 112:1037–1050

    Google Scholar 

  • van Oort PAJ (2007) Interpreting the change detection error matrix. Remote Sens Environ 108:1–8

    Article  Google Scholar 

  • Verburg PH, Soepboer W, Veldkamp A, Limpiada R, Espaldon V, Mastura SSA (2002) Modeling the spatial dynamics of regional land use: the CLUE-S model. Environ Manag 30:391–405

    Article  Google Scholar 

  • Vicente-Serrano SM, Lasanta T, Romo A (2004) Analysis of spatial and temporal evolution of vegetation cover in the Spanish Central Pyrenees: role of human management. Environ Manag 34:802–818

    Article  Google Scholar 

  • Wang MH, Howarth PJ (1993) Modeling errors in remote-sensing image classification. Remote Sens Environ 45:261–271

    Article  Google Scholar 

  • Wilson EH, Sader SA (2002) Detection of forest harvest type using multiple dates of Landsat TM imagery. Remote Sens Environ 80:385–396

    Article  Google Scholar 

  • Woodcock CE, Gopal S (2000) Fuzzy set theory and thematic maps: accuracy assessment and area estimation. Int J Geogr Inf Sci 14:153–172

    Article  Google Scholar 

  • Xiao JY, Shen YJ, Ge JF, Tateishi R, Tang CY, Liang YQ, Huang ZY (2006) Evaluating urban expansion and land use change in Shijiazhuang, China, by using GIS and remote sensing. Landscape Urban Plan 75:69–80

    Article  Google Scholar 

  • Zhang J, Foody GM (1998) A fuzzy classification of sub-urban land cover from remotely sensed imagery. Int J Remote Sens 19:2721–2738

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the Regional Government of Junta de Castilla y León (Spain) and Fondo Social Europeo, under the research project funding supplied by the order EDU/1490/2003, awarded to J.M. Álvarez-Martínez. The authors would like to thank their support and comments to Fire Ecology Research Group of the University of León, Land Dynamics Group of the University of Wageningen, Cartography Support Service of the University of León and forest engineers and rangers of the Environmental Section of the Autonomous Region of Castilla y León. We also are grateful to Althea Davies, F.J. Lozano, A. Moran and L. Soler for help, and the anonymous reviewers for their helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jose Manuel Álvarez-Martínez.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Álvarez-Martínez, J.M., Stoorvogel, J.J., Suárez-Seoane, S. et al. Uncertainty analysis as a tool for refining land dynamics modelling on changing landscapes: a case study in a Spanish Natural Park. Landscape Ecol 25, 1385–1404 (2010). https://doi.org/10.1007/s10980-010-9492-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10980-010-9492-z

Keywords

  • Confusion index
  • Fire recurrence
  • Fuzzy classification
  • Land cover change
  • Landsat
  • Vegetation recovery