Landscape Ecology

, Volume 24, Issue 7, pp 919–927 | Cite as

Isolation from forest reduces pollination, seed predation and insect scavenging in Swiss farmland

  • Nina Farwig
  • Debra Bailey
  • Estée Bochud
  • John D. Herrmann
  • Eveline Kindler
  • Niklaus Reusser
  • Christof Schüepp
  • Martin H. Schmidt-Entling
Research Article


Habitat loss and fragmentation lead to changes in species richness and composition which may affect ecosystem services. Yet, few studies distinguish between the effects of habitat loss and isolation, or how multiple ecosystem services may be affected simultaneously. We investigated the effects of variation in cover of woody and open semi-natural habitats and isolation from forest on the relative functioning of pollination, seed predation and insect scavenging in agricultural landscapes. We established 30 sites in grassland locations in the Swiss plateau around Berne. The sites varied independently in their isolation from forest edges, in the percentage of woody habitats and in the percentage of open semi-natural habitats in the surrounding landscape (500 m radius). We experimentally exposed primroses, sunflower seeds and cricket corpses during spring 2008. None of the three studied services was affected by variation in woody or open semi-natural habitat cover. However, the proportion of flowers setting seed was significantly reduced by isolation from forest. Further, seed predation and insect scavenging were significantly lower at isolated sites than at sites connected to woody habitat. This pattern was particularly pronounced for seeds and insect corpses that were enclosed by wire netting and thus inaccessible to vertebrates. Thus, all three studied services responded quite similarly to the landscape context. The observed small-scale determination of seed set, seed predation and insect scavenging contrasts with larger-scale determination of pollination and insect pest control found in other studies.


Ecosystem service Forest Habitat fragmentation Habitat loss Open semi-natural habitat Swiss plateau 



We are grateful to the 30 farmers who allowed access to their land. We thank Dana G. Berens, Jason M. Tylianakis and two anonymous reviewers for comments on the manuscript. The study was supported by the Swiss National Science foundation under grant number 3100A0-114058 to Felix Herzog and Martin Schmidt-Entling.


  1. Aguilar R, Ashworth L, Galetto L, Aizen MA (2006) Plant reproductive susceptibility to habitat fragmentation: review and synthesis through a meta-analysis. Ecol Lett 9:968–980. doi: 10.1111/j.1461-0248.2006.00927.x PubMedCrossRefGoogle Scholar
  2. Armitage AR, Fong P (2004) Gastropod colonization of a created coastal wetland: potential influences of habitat suitability and dispersal ability. Restor Ecol 12:391–400. doi: 10.1111/j.1061-2971.2004.00358.x CrossRefGoogle Scholar
  3. Aviron S, Nitsch H, Jeanneret P, Buholzer S, Luka H, Pfiffner L, Pozzi S, Schüpbach B, Walter T, Herzog F (2009) Ecological cross compliance promotes farmland biodiversity in Switzerland. Front Ecol Environ 7:247–252. doi: 10.1890/070197 CrossRefGoogle Scholar
  4. Billeter R, Liira J, Bailey D, Bugter R, Arens P, Augenstein I, Aviron S, Baudry J, Bukacek R, Burel F, Cerny M, De Blust G, De Cock R, Diekötter T, Dietz H, Dirksen J, Durka W, Frenzel M, Hamersky R, Hendrickx F, Herzog F, Klotz S, Koolstra B, Lausch A, Le Coeur D, Maelfait JP, Opdam P, Roubalova M, Schermann A, Schermann N, Schmitt T, Schweiger O, Smulders MJM, Speelmans M, Simova P, Verboom J, van Wingerden W, Zobel M, Edwards PJ (2008) Indicators for biodiversity in agricultural landscapes: a pan-European study. J Appl Ecol 45:141–150CrossRefGoogle Scholar
  5. Brys R, Jacquemyn H, Endels P, Van Rossum F, Hermy M, Triest L, De Bruyn L, De Blust G (2004) Reduced reproductive success in small populations of the self-incompatible Primula vulgaris. J Ecol 92:5–14. doi: 10.1046/j.0022-0477.2004.00840.x CrossRefGoogle Scholar
  6. Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach, 2nd edn. Springer, New York 488 ppGoogle Scholar
  7. Chapin FS, Zavaleta ES, Eviner VT, Naylor RL, Vitousek PM, Reynolds HL, Hooper DU, Lavorel S, Sala OE, Hobbie SE, Mack MC, Diaz S (2000) Consequences of changing biodiversity. Nature 405:234–242. doi: 10.1038/35012241 PubMedCrossRefGoogle Scholar
  8. Crawley MJ (2002) Statistical computing. An introduction to data analysis using S-Plus. Whiley, NewYorkGoogle Scholar
  9. Didham RK, Ghazoul J, Stork NE, Davis AJ (1996) Insects in fragmented forests: a functional approach. Trends Ecol Evol 11:255–262. doi: 10.1016/0169-5347(96)20047-3 CrossRefGoogle Scholar
  10. Diekötter T, Haynes KJ, Mazeffa D, Crist TO (2007) Direct and indirect effects of habitat area and matrix composition on species interactions among flower-visiting insects. Oikos 116:1588–1598. doi: 10.1111/j.0030-1299.2007.15963.x CrossRefGoogle Scholar
  11. Donoso DS, Grez AA, Simonetti JA (2003) Effects of forest fragmentation on the granivory of differently sized seeds. Biol Conserv 115:63–70. doi: 10.1016/S0006-3207(03)00094-6 CrossRefGoogle Scholar
  12. Duelli P, Obrist MK (2003) Regional biodiversity in an agricultural landscape: the contribution of seminatural habitat islands. Basic Appl Ecol 4:129–138. doi: 10.1078/1439-1791-00140 CrossRefGoogle Scholar
  13. Fahrig L (2003) Effects of habitat fragmentation on biodiversity. Annu Rev Ecol Evol Syst 34:487–515. doi: 10.1146/annurev.ecolsys.34.011802.132419 CrossRefGoogle Scholar
  14. Farwig N, Bleher B, Von der Gönna S, Böhning-Gaese K (2008) Does forest fragmentation and selective logging affect seed predators and seed predation rates of Prunus africana (Rosaceae)? Biotropica 40:218–224. doi: 10.1111/j.1744-7429.2007.00365.x CrossRefGoogle Scholar
  15. Foley JA, DeFries R, Asner GP, Barford C, Bonan G, Carpenter SR, Chapin FS, Coe MT, Daily GC, Gibbs GC, Helkowski HK, Helkowski JH, Hollowy T, Howard EA, Kucharik CJ, Monfreda C, Patz JA, Prentice IC, Ramankutty N, Synder PK (2005) Global consequences of land use. Science 309:570–574. doi: 10.1126/science.1111772 PubMedCrossRefGoogle Scholar
  16. Fournier E, Loreau M (2001) Respective roles of recent hedges and forest patch remnants in the maintenance of ground-beetle (Coleoptera: Carabidae) diversity in an agricultural landscape. Landscape Ecol 16:17–32. doi: 10.1023/A:1008115516551 CrossRefGoogle Scholar
  17. Griffith J, Phillips DS, Compton SG, Wright C, Incoll LD (1998) Responses of slug numbers and slug damage to crops in a silvoarable agroforestry landscape. J Appl Ecol 35:252–260. doi: 10.1046/j.1365-2664.1998.00291.x CrossRefGoogle Scholar
  18. Haynes KJ, Diekötter T, Crist TO (2007) Resource complementation and the response of an insect herbivore to habitat area and fragmentation. Oecologia 153:511–520. doi: 10.1007/s00442-007-0749-4 PubMedCrossRefGoogle Scholar
  19. Jacquemyn H, Brys R, Hermy M (2001) Patch occupancy, population size and reproductive success of a forest herb (Primula elatior) in a fragmented landscape. Oecologia 11:413–418Google Scholar
  20. Jauker F, Diekötter T, Schwarzbach F, Wolters V (2009) Pollinator dispersal in an agricultural matrix: opposing responses of wild bees and hoverflies to landscape structure and distance from main habitat. Landscape Ecol 24:547–555. doi: 10.1007/s10980-009-9331-2 Google Scholar
  21. Kirika JM, Bleher B, Böhning-Gaese K, Chira R, Farwig N (2008) Fragmentation and local disturbance of forests reduce frugivore diversity and fruit removal in Ficus thonningii. Basic Appl Ecol 9:663–672. doi: 10.1016/j.baae.2007.07.002 CrossRefGoogle Scholar
  22. Klein AM, Vaissière BE, Cane JH, Steffan-Dewenter I, Cunningham SA, Kremen C, Tscharntke T (2007) Importance of pollinators in changing landscapes for world crops. Proc R Soc B Biol Sci 274:303–313CrossRefGoogle Scholar
  23. Kotze DJ, Lawes MJ (2007) Viability of ecological processes in small Afromontane forest patches in South Africa. Aust Ecol 32:294–304. doi: 10.1111/j.1442-9993.2007.01694.x CrossRefGoogle Scholar
  24. Kremen C, Williams NM, Thorp RW (2002) Crop pollination from native bees at risk from agricultural intensification. Proc Natl Acad Sci USA 99:16816–16821. doi: 10.1073/pnas.262413599 CrossRefGoogle Scholar
  25. Kremen C, Williams NM, Bugg RL, Fay JP, Thorp RW (2004) The area requirements of an ecosystem service: crop pollination by native bee communities in California. Ecol Lett 7:1109–1119. doi: 10.1111/j.1461-0248.2004.00662.x CrossRefGoogle Scholar
  26. Kremen C, Williams NM, Aizen MA, Gemmill-Harren B, LeBuhn G, Minckley R, Packer L, Potts SG, Roulston T, Steffan-Dewenter I, Vazquez DP, Winfree R, Adams L, Crone EE, Greenlead SS, Keitt TH, Klein AM, Regetz J, Ricketts TH (2007) Pollination and other ecosystem services produced by mobile organisms: a conceptual framework for the effects of land-use change. Ecol Lett 10:299–314. doi: 10.1111/j.1461-0248.2007.01018.x PubMedCrossRefGoogle Scholar
  27. Kruess A, Tscharntke T (1994) Habitat fragmentation, species loss, and biological control. Science 264:581–1584. doi: 10.1126/science.264.5165.1581 CrossRefGoogle Scholar
  28. Kruess A, Tscharntke T (2000) Species richness and parasitism in a fragmented landscape: experiments and field studies with insects on Vicia sepium. Oecologia 122:129–137. doi: 10.1007/PL00008829 CrossRefGoogle Scholar
  29. Larsen TH, Williams NM, Kremen C (2005) Extinction order and altered community structure rapidly disrupt ecosystem functioning. Ecol Lett 8:538–547. doi: 10.1111/j.1461-0248.2005.00749.x CrossRefGoogle Scholar
  30. Luck GW, Daily GC, Ehrlich PR (2003) Population diversity and ecosystem services. Trends Ecol Evol 18:331–336. doi: 10.1016/S0169-5347(03)00100-9 CrossRefGoogle Scholar
  31. Lundgren JG, Shaw JT, Zaborski ER, Eastman CE (2005) The influence of organic transition systems on beneficial ground-dwelling arthropods and predation of insects and weed seeds. Renew Agr Food Syst 21:227–237Google Scholar
  32. Matson PA, Parton WJ, Power AG, Swift MJ (1997) Agricultural intensification and ecosystem properties. Science 277:504–509. doi: 10.1126/science.277.5325.504 CrossRefPubMedGoogle Scholar
  33. Meek B, Loxton D, Sparks T, Pywell R, Pickett H, Nowakowski M (2002) The effect of arable field margin composition on invertebrate biodiversity. Biol Conserv 106:259–271. doi: 10.1016/S0006-3207(01)00252-X CrossRefGoogle Scholar
  34. Mortimer SR, Booth RG, Harris SJ, Brown VK (2002) Effects of initial site management on the Coleoptera assemblages colonising newly established chalk grassland on ex-arable land. Biol Conserv 104:301–313. doi: 10.1016/S0006-3207(01)00195-1 CrossRefGoogle Scholar
  35. Nisbet RM, Diehl S, Wilson WG, Cooper SD, Donalson DD, Kratz K (1997) Primary-productivity gradients and short-term population dynamics in open systems. Ecol Monogr 67:535–553Google Scholar
  36. Pimm SL (1982) Food webs. Chapman & Hall, LondonGoogle Scholar
  37. Retana J, Cerdà X, Espadaler X (1991) Arthropod corpses in a temperate grassland: a limited supply? Ecography 14:63–67. doi: 10.1111/j.1600-0587.1991.tb00634.x CrossRefGoogle Scholar
  38. R Development Core Team (2005) A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available at
  39. Robinson RA, Sutherland WJ (2002) Post-war changes in arable farming and biodiversity in Great Britain. J Appl Ecol 39:157–176. doi: 10.1046/j.1365-2664.2002.00695.x CrossRefGoogle Scholar
  40. Sanderson FJ, Kloch A, Sanchanowicz K, Donald PF (2009) Predicting the effects of agricultural change on farmland bird populations in Poland. Agric Ecosyst Environ 129:37–42. doi: 10.1016/j.agee.2008.07.001 CrossRefGoogle Scholar
  41. Saunders DA, Hobbs RJ, Margules CR (1991) Biological consequences of ecosystem fragmentation: a review. Conserv Biol 5:18–32. doi: 10.1111/j.1523-1739.1991.tb00384.x CrossRefGoogle Scholar
  42. Schmidt MH, Thies C, Nentwig W, Tscharntke T (2008) Contrasting responses of arable spiders to the landscape matrix at different spatial scales. J Biogeogr 35:157–166Google Scholar
  43. Schulke B, Waser NM (2001) Long-distance pollinator flights and pollen dispersal between populations of Delphinium nuttallianum. Oecologia 127:239–245. doi: 10.1007/s004420000586 CrossRefGoogle Scholar
  44. Steffan-Dewenter I, Tscharntke T (1999) Effects of habitat isolation on pollinator communities and seed set. Oecologia 121:432–444. doi: 10.1007/s004420050949 CrossRefGoogle Scholar
  45. Steffan-Dewenter I, Munzenberg U, Burger U, Thies C, Tscharntke T (2002) Scale-dependent effects of landscape context on three pollinator guilds. Ecology 83:1421–1432CrossRefGoogle Scholar
  46. Thies C, Tscharntke T (1999) Landscape structure and biological control in agroecosystems. Science 285:893–895. doi: 10.1126/science.285.5429.893 PubMedCrossRefGoogle Scholar
  47. Tilman D, Cassman KG, Matson PA, Naylor R, Polasky S (2002) Agricultural sustainability and intensive production practices. Nature 418:671–677. doi: 10.1038/nature01014 PubMedCrossRefGoogle Scholar
  48. Tivy J (1990) Agricultural ecology. Longman Scientific and Technical, UKGoogle Scholar
  49. Tscharntke T, Klein AM, Kruess A, Steffan-Dewenter I, Thies C (2005) Landscape perspectives on agricultural intensification and biodiversity—ecosystem service management. Ecol Lett 8:857–874. doi: 10.1111/j.1461-0248.2005.00782.x CrossRefGoogle Scholar
  50. Tscharntke T, Bommarco R, Clough Y, Crist TO, Kleijn D, Rand TA, Tylianakis JM, van Nouhuys S, Vidal S (2007) Conservation biological control and enemy diversity on a landscape scale. Biol Control 43:294–309. doi: 10.1016/j.biocontrol.2007.08.006 CrossRefGoogle Scholar
  51. Tylianakis JM, Didham RK, Bascompte J, Wardle DA (2008) Global change and species interactions in terrestrial ecosystems. Ecol Lett 11:1351–1363. doi: 10.1111/j.1461-0248.2008.01250.x PubMedCrossRefGoogle Scholar
  52. Valentine DH (1948) Studies in British Primulas. II. Ecology and taxonomy of primrose and oxlip (Primula vulgaris Huds. and P. elatior Schreb.). New Phytol 47:111–130. doi: 10.1111/j.1469-8137.1948.tb05095.x CrossRefGoogle Scholar
  53. Watts CH, Didham RK (2006) Influences of habitat isolation on invertebrate colonization of Sporadanthus ferrugineus in a mined peat bog. Restor Ecol 14:412–419. doi: 10.1111/j.1526-100X.2006.00149.x CrossRefGoogle Scholar
  54. Westphal C, Steffan-Dewenter I, Tscharntke T (2003) Mass flowering crops enhance pollinator densities at a landscape scale. Ecol Lett 6:961–965. doi: 10.1046/j.1461-0248.2003.00523.x CrossRefGoogle Scholar
  55. White SS, Renner KA, Menalled FD, Landis DA (2007) Feeding preferences of weed seed predators and effect on weed emergence. Weed Sci 55:606–612. doi: 10.1614/WS-06-162.1 CrossRefGoogle Scholar
  56. Wilcock C, Neiland R (2002) Pollination failure in plants: why it happens and when it matters. Trends Plant Sci 7:270–277. doi: 10.1016/S1360-1385(02)02258-6 PubMedCrossRefGoogle Scholar
  57. Yang LH (2006) Interactions between a detrital resource pulse and a detritivore community. Oecologia 147:522–532PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Nina Farwig
    • 1
    • 2
  • Debra Bailey
    • 3
  • Estée Bochud
    • 2
  • John D. Herrmann
    • 2
  • Eveline Kindler
    • 2
  • Niklaus Reusser
    • 2
  • Christof Schüepp
    • 2
  • Martin H. Schmidt-Entling
    • 2
  1. 1.Department of Ecology, Conservation Ecology, Faculty of BiologyPhilipps-Universität MarburgMarburgGermany
  2. 2.Institute of Ecology and Evolution (IEE), Community EcologyUniversity of BernBernSwitzerland
  3. 3.Agroscope Reckenholz-TänikonResearch Station ARTZürichSwitzerland

Personalised recommendations