Skip to main content
Log in

Comparing fire spread algorithms using equivalence testing and neutral landscape models

  • Report
  • Published:
Landscape Ecology Aims and scope Submit manuscript

Abstract

We demonstrate a method to evaluate the degree to which a meta-model approximates spatial disturbance processes represented by a more detailed model across a range of landscape conditions, using neutral landscapes and equivalence testing. We illustrate this approach by comparing burn patterns produced by a relatively simple fire spread algorithm with those generated by a more detailed fire behavior model from which the simpler algorithm was derived. Equivalence testing allows objective comparisons of the output of simple and complex models, to determine if the results are significantly similar. Neutral landscape models represent a range of landscape conditions that the model may encounter, allowing evaluation of the sensitivity and behavior of the model to different landscape compositions and configurations. We first tested the model for universal applicability, then narrowed the testing to assess the practical domain of applicability. As a whole, the calibrated simple model passed the test for significant equivalence using the 25% threshold. When applied to a range of landscape conditions different from the calibration scenarios, the model failed the tests for equivalence. Although our particular model failed the tests, the neutral landscape models were helpful in determining an appropriate domain of applicability and in assessing the model sensitivity to landscape changes. Equivalence testing provides an effective method for model comparison, and coupled with neutral landscapes, our approach provides an objective way to assess the domain of applicability of a spatial model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  • Albini FA (1976) Estimating wildfire behavior and effects. USDA Forest Service Intermountain Forest and Range Experiment Station, General Technical Report GTR-INT-30

  • Albini FA (1979) Spot fire distance from burning trees—a predictive model. USDA Forest Service, General Technical Report INT-56

  • Albright D, Meisner BN (1999) Classification of fire simulation systems. Fire Manage Notes 59(2):5–12

    Google Scholar 

  • Andrews PL, Bevins CD, Seli RC (2005) BehavePlus fire modeling system, version 3.0: user’s guide revised. USDA Forest Service Rocky Mountain Research Station, RMRS-GTR-106WWW

  • Berger RL, Hsu JC (1996) Bioequivalence trials, intersection-union tests, and equivalence confidence sets. Stat Sci 11(4):283–319. doi:10.1214/ss/1032280304

    Article  Google Scholar 

  • Finney MA (2002) Fire growth using minimum travel time methods. Can J For Res 32:1420–1424. doi:10.1139/x02-068

    Article  Google Scholar 

  • Finney MA (2004) FARSITE: fire area simulator—model development and evaluation. USDA Forest Service, Rocky Mountain Research Station, Research Paper RMRS-RP-4 revised

  • Forestry Canada Fire Danger Group (1992) Development and structure of the Canadian Forest Fire Behavior Prediction System. Forestry Canada, Science and Sustainable Development Directorate, Information Report ST-X-3

  • Fujioka FM (2002) A new method for the analysis of fire spread modeling errors. Int J Wildland Fire 11(3–4):193–203. doi:10.1071/WF02004

    Article  Google Scholar 

  • Gardner RH (1999) RULE: a program for the generation of random maps and the analysis of spatial patterns. In: Klopatek JM, Gardner RH (eds) Landscape ecological analysis: issues and applications. Springer, New York, pp 280–303

    Google Scholar 

  • Gardner RH, Urban DL (2007) Neutral models for testing landscape hypotheses. Landscape Ecol 22:15–29. doi:10.1007/s10980-006-9011-4

    Article  Google Scholar 

  • Gardner RH, Milne BT, Turner MG, O’Neill RV (1987) Neutral models for the analysis of broad-scale landscape pattern. Landscape Ecol 1(1):19–28. doi:10.1007/BF02275262

    Article  Google Scholar 

  • Hargrove WW, Gardner RH, Turner MG, Romme WH, Despain DG (2000) Simulating fire patterns in heterogeneous landscapes. Ecol Modell 135(2–3):243–263. doi:10.1016/S0304-3800(00)00368-9

    Article  Google Scholar 

  • Hartford RA, Rothermel RC (1991) Moisture measurements in the Yellowstone Fires in 1988. USDA Forest Service, Research Note INT-396

  • Hauck WW, Hyslop T, Anderson S, Bois FY, Tozer TN (1995) Statistical and regulatory considerations for multiple measures in bioequivalence testing. Clin Res Regul Aff 12(4):249–265. doi:10.3109/10601339509019618

    Article  Google Scholar 

  • He HS, Mladenoff DJ (1999) Spatially explicit and stochastic simulation of forest-landscape fire disturbance and succession. Ecology 80(1):81–99

    Article  Google Scholar 

  • Levin SA (1992) The problem of pattern and scale in ecology. Ecology 73:1943–1967. doi:10.2307/1941447

    Article  Google Scholar 

  • Li X, He HS, Wang X, Bu R, Hu Y, Chang Y (2004) Evaluating the effectiveness of neutral landscape models to represent a real landscape. Landsc Urban Plan 69:137–148. doi:10.1016/j.landurbplan.2003.10.037

    Article  CAS  Google Scholar 

  • McGarigal K, Marks BJ (1995) FRAGSTATS: spatial pattern analysis program for quantifying landscape structure. USDA Forest Service Pacific Northwest Research Station, General Technical Report PNW-GTR-351

  • McKenzie D, Peterson DL, Alvarado E (1996) Extrapolation problems in modeling fire effects at large spatial scales: a review. Int J Wildland Fire 6(4):165–176. doi:10.1071/WF9960165

    Article  Google Scholar 

  • Parkhurst DF (2001) Statistical significance tests: equivalence and reverse tests should reduce misinterpretation. Bioscience 51:1051–1057. doi:10.1641/0006-3568(2001)051[1051:SSTEAR]2.0.CO;2

    Article  Google Scholar 

  • Pocock SJ, Geller NL, Tsiatis AA (1987) The analysis of multiple endpoints in clinical trials. Biometrics 43(3):487–498. doi:10.2307/2531989

    Article  PubMed  CAS  Google Scholar 

  • R Development Core Team (2007) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Robinson AP, Froese RE (2004) Model validation using equivalence tests. Ecol Modell 176:349–358. doi:10.1016/j.ecolmodel.2004.01.013

    Article  Google Scholar 

  • Robinson AP, Duursma RA, Marshall JD (2005) A regression-based equivalence test for model validation: shifting the burden of proof. Tree Physiol 25:903–913

    PubMed  Google Scholar 

  • Saupe D (1988) Algorithms for random fractals. In: Peitgen H-O, Saupe D (eds) The science of fractal images. Springer, New York, pp 71–113

    Google Scholar 

  • Schneider DC (1994) Quantitative ecology: spatial and temporal scaling. Academic Press, San Diego

    Google Scholar 

  • Stauffer D, Aharony A (1992) Introduction to percolation theory. Taylor and Francis, Washington DC

    Google Scholar 

  • Strayer DL, Ewing HA, Bigelow S (2003) What kind of spatial and temporal details are required in models of heterogeneous systems? Oikos 102(3):654–662. doi:10.1034/j.1600-0706.2003.12184.x

    Article  Google Scholar 

  • Sturtevant BR, Cleland DT (2007) Human and biophysical factors influencing modern fire disturbance in northern Wisconsin. Int J Wildland Fire 16(4):398–413. doi:10.1071/WF06023

    Article  Google Scholar 

  • Sturtevant BR, Miranda BR, Yang J, He HS, Gustafson EJ, Scheller RM (2009) Studying fire mitigation strategies in multi-ownership landscapes: balancing the management of fire dependent ecosystems and fire risk. Ecosystems. doi:10.1007/s10021-009-9234-8

  • Urban DL (2005) Modeling ecological processes across scales. Ecology 86(8):1996–2006. doi:10.1890/04-0918

    Article  Google Scholar 

  • Urban DL, Acevedo MF, Garman SL (1999) Scaling fine-scale processes to large-scale patterns using models derived from models: meta-models. In: Mladenoff DJ, Baker WL (eds) Spatial modeling of forest landscape change. Cambridge University Press, Cambridge, pp 70–98

    Google Scholar 

  • Van Wagner CE (1993) Prediction of crown fire behavior in two stands of jack pine. Can J For Res 23:442–449. doi:10.1139/x93-062

    Article  Google Scholar 

  • Wellek S (2003) Testing statistical hypotheses of equivalence. Chapman & Hall/CRC Press, New York

    Google Scholar 

  • Welsh AH, Cunningham RB, Donnelly CF, Lindenmayer DB (1996) Modelling the abundance of rare species: statistical models for counts with extra zeros. Ecol Modell 88:297–308. doi:10.1016/0304-3800(95)00113-1

    Article  Google Scholar 

  • With KA, King AW (1997) The use and misuse of neutral landscape models in ecology. Oikos 79(2):219–229. doi:10.2307/3546007

    Article  Google Scholar 

  • Wu J, Hobbs R (2002) Key issues and research priorities in landscape ecology: an idiosyncratic synthesis. Landscape Ecol 17:355–365. doi:10.1023/A:1020561630963

    Article  Google Scholar 

  • Yang J, He HS, Sturtevant BR, Miranda BR, Gustafson EJ (2008) Comparing effects of fire modeling methods on simulated fire patterns and succession: a case study in the Missouri Ozarks. Can J For Res 38:1290–1302. doi:10.1139/X07-235

    Article  Google Scholar 

  • Zariffa NMD, Patterson SD, Boyle D, Hyneck M (2000) Case studies, practical issues and observations on population and individual bioequivalence. Stat Med 19:2811–2820. doi:10.1002/1097-0258(20001030)19:20<2811::AID-SIM547>3.0.CO;2-P

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Andrew Robinson for preliminary advice and thoughtful comments on an earlier draft, in addition to providing his Equivalence package for R. Comments and suggestions from two anonymous reviewers led to a substantially improved manuscript. We thank John Stanovick for his valuable consultations. This research was supported by funding from the National Fire Plan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian R. Miranda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miranda, B.R., Sturtevant, B.R., Yang, J. et al. Comparing fire spread algorithms using equivalence testing and neutral landscape models. Landscape Ecol 24, 587–598 (2009). https://doi.org/10.1007/s10980-009-9343-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10980-009-9343-y

Keywords

Navigation