Skip to main content

β-Diversity and vegetation structure as influenced by slope aspect and altitude in a seasonally dry tropical landscape

Abstract

Topography strongly affects the distribution of insolation in the terrain. Patterns of incoming solar radiation affect energy and water balances within a landscape, resulting in changes in vegetation attributes. Unlike other regions, in seasonally dry tropical forest areas the potential contribution of topography-related environmental heterogeneity to β-diversity is unclear. In Mt. Cerro Verde (Oaxaca), S. Mexico, we: (1) modelled potential energy income for N- and S-facing slopes based on a digital elevation model, (2) examined the response of vegetation structure to slope aspect and altitude and (3) related variations in plant diversity to topography-related heterogeneity. Vegetation survey and modelling of potential energy income (SOLEI-32 model) were based on 30 plots equally distributed among three altitudinal belts defined for each slope of the mountain; combining the three altitudinal belts and the two slopes produced six environmental groups, represented by five vegetation plots each. Potential energy income was about 20% larger on the S than on the N slope (9,735 versus 8,138 MJ/m2), but it did not vary with altitude. In addition, the temporal behaviour of potential energy income throughout the year differed greatly between slopes. Vegetation structure did not show significant changes linked to the environmental gradients analysed, but altitude and aspect did affect β-diversity. We argue that the classic model of slope aspect effect on vegetation needs reconsideration for tropical landscapes.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  • Armesto JJ, Martínez JA (1978) Relations between vegetation structure and slope aspect in the Mediterranean region of Chile. J Ecol 66:881–889. doi:10.2307/2259301

    Article  Google Scholar 

  • Balvanera P, Lott E, Segura G, Siebe C, Islas A (2002) Patterns of β-diversity in a Mexican tropical dry forest. J Veg Sci 13:145–158. doi:10.1658/1100-9233(2002)013[0145:PODIAM]2.0.CO;2

    Article  Google Scholar 

  • Barbour MG, Burk JH, Pitts WD, Gilliam FS, Schwartz MW (1999) Terrestrial plant ecology, 3rd edn. Benjamin-Cummings, Menlo Park

    Google Scholar 

  • Beaty RM, Taylor AH (2001) Spatial and temporal variation of fire regimes in a mixed conifer landscape, Southern Cascades, California, USA. J Biogeogr 28:955–966. doi:10.1046/j.1365-2699.2001.00591.x

    Article  Google Scholar 

  • Beniston M (2000) Environmental change in mountains and uplands. Oxford University Press, New York

    Google Scholar 

  • Bruijnzeel LA, Veneklaas EJ (1998) Climatic conditions and tropical montane forest productivity: the fog has not lifted yet. Ecology 79:3–9

    Google Scholar 

  • Cantlon JE (1953) Vegetation and microclimates on north and south slopes of Cushetunk Mountain, New Jersey. Ecol Monogr 23:241–270. doi:10.2307/1943593

    Article  Google Scholar 

  • Clark DB, Palmer MW, Clark DA (1999) Edaphic factors and the landscape-scale distributions of tropical rain forest trees. Ecology 80:2662–2675

    Article  Google Scholar 

  • Daubenmire R (1968) Plant communities. Harper and Row, New York

    Google Scholar 

  • Fernández-Palacios JM (1992) Climatic responses of plant species on Tenerife, The Canary Islands. J Veg Sci 3:595–602

    Article  Google Scholar 

  • Ferrusquía-Villafranca I (1993) Geology of Mexico: a synopsis. In: Ramamoorthy TP, Bye R, Lot A, Fa J (eds) Biological diversity of Mexico: origins and distributions. Oxford University Press, New York, pp 3–108

    Google Scholar 

  • Franklin J, McCullough P, Gray C (2000) Terrain variables used for predictive mapping of vegetation communities in Southern California. In: Wilson JP, Gallant JC (eds) Terrain analysis: principles and applications. Wiley, New York, pp 331–354

    Google Scholar 

  • Gallardo-Cruz JA, Meave JA, Pérez-García EA (2005) Estructura, composición y diversidad de la selva baja caducifolia del Cerro Verde, Nizanda (Oaxaca), México. Bol Soc Bot Méx 76:19–35

    Google Scholar 

  • García E (2004) Modificaciones al sistema de clasificación climática de Köppen, 4th edn. Universidad Nacional Autónoma de México, Mexico City

    Google Scholar 

  • Gentry AH (1988) Changes in plant community diversity and floristic composition on environmental and geographical gradients. Ann Mo Bot Gard 75:1–34. doi:10.2307/2399464

    Article  Google Scholar 

  • Givnish TJ (1999) On the causes of gradients in tropical tree diversity. J Ecol 87:193–210. doi:10.1046/j.1365-2745.1999.00333.x

    Article  Google Scholar 

  • Grace J (1981) Some effects of wind on plants. In: Grace J, Ford ED, Jarvis PG (eds) Plants and their atmospheric environment. Blackwell, London, pp 175–205

    Google Scholar 

  • Grytnes JA (2003) Species-richness patterns of vascular plants along seven altitudinal transects in Norway. Ecography 26:291–300. doi:10.1034/j.1600-0587.2003.03358.x

    Article  Google Scholar 

  • Grytnes JA, Beaman JH (2006) Elevational species richness patterns for vascular plants for Mount Kinabalu, Borneo. J Biogeogr 33:1838–1849. doi:10.1111/j.1365-2699.2006.01554.x

    Article  Google Scholar 

  • Grytnes JA, Vetaas OR (2002) Species richness and altitude: a comparison between null models and interpolated plant species richness along the Himalayan altitudinal gradient, Nepal. Am Nat 159:294–304. doi:10.1086/338542

    PubMed  Article  Google Scholar 

  • Haslett JR (1997) Mountain ecology: organism responses to environmental change, an introduction. Glob Ecol Biogeogr 6:3–6. doi:10.2307/2997522

    Article  Google Scholar 

  • Hayek L-AC, Buzas MA (1997) Surveying natural populations. Columbia University Press, New York

    Google Scholar 

  • Hietel E, Waldhardt R, Otte A (2004) Analysing land-cover changes in relation to environmental variables in Hesse, Germany. Landscape Ecol 19:473–489. doi:10.1023/B:LAND.0000036138.82213.80

    Article  Google Scholar 

  • Holland PG, Steyn DG (1975) Vegetational responses to latitudinal variations in slope angle and aspect. J Biogeogr 2:179–183. doi:10.2307/3037989

    Article  Google Scholar 

  • Huggett RJ (1995) Geoecology: an evolutionary approach. Routledge, New York

    Google Scholar 

  • Kappelle M, Van Uffelen J-G, Cleef AM (1995) Altitudinal zonation of montane Quercus forests along two transects in Chirripó National Park, Costa Rica. Vegetatio 119:119–153. doi:10.1007/BF00045594

    Article  Google Scholar 

  • Lebrija-Trejos EE, Bongers F, Pérez-García EA, Meave JA (2008) Successional change and resilience of a very dry tropical deciduous forest following shifting agriculture. Biotropica 40:422–431. doi:10.1111/j.1744-7429.2008.00398.x

    Article  Google Scholar 

  • Lieberman M, Lieberman D, Hartshorn GS, Peralta R (1996) Tropical forest structure and composition on a large-scale altitudinal gradient in Costa Rica. J Ecol 84:137–152. doi:10.2307/2261350

    Article  Google Scholar 

  • Lott EJ, Atkinson TH (2006) Mexican and Central American seasonally dry tropical forests: Chamela- Cuixmala, Jalisco, as focal point for comparison. In: Pennington RT, Lewis GP, Ratter JA (eds) Neotropical savannas and seasonally dry forests. Plant diversity, biogeography and conservation. Taylor and Francis, Boca Raton, Florida, pp 315–342

    Google Scholar 

  • Lovett JC (1999) Tanzanian forest tree plot diversity and elevation. J Trop Ecol 15:689–694. doi:10.1017/S0266467499001108

    Article  Google Scholar 

  • Lüttge U (1997) Physiological ecology of tropical plants. Springer, Berlin

    Google Scholar 

  • Maass JM, Jaramillo V, Martínez-Yrízar A, García-Oliva F, Pérez-Jiménez A, Sarukhán J (2002) Aspectos funcionales del ecosistema de selva baja caducifolia en Chamela, Jalisco. In: Noguera FA, Vega-Rivera JH, García-Aldrete AN, Quesada-Avedaño M (eds) Historia Natural de Chamela. Universidad Nacional Autónoma de México, Mexico City, pp 525–542

    Google Scholar 

  • Magurran AE (2004) Measuring biological diversity. Blackwell, Oxford

    Google Scholar 

  • Martínez-Yrízar A, Búrquez A, Maass M (2000) Structure and functioning of tropical deciduous forest in Western Mexico. In: Robichaux RH, Yetman DA (eds) The tropical deciduous forest of Alamos: biodiversity of a threatened ecosystem in Mexico. The University of Arizona Press, Tucson, pp 19–35

    Google Scholar 

  • Mészároš I, Miklánek P (2006) Calculation of potential evapotranspiration based on solar radiation income modeling in mountainous areas. Biologia, Bratislava 61(Suppl 19):S284–S288

    Article  Google Scholar 

  • Mueller-Dombois D, Ellenberg H (1974) Aims and methods of vegetation ecology. Wiley, New York

    Google Scholar 

  • Nichols WF, Killinbeck KT, August PV (1998) The influence of geomorphological heterogeneity on biodiversity II. A landscape perspective. Conserv Biol 12:371–379. doi:10.1046/j.1523-1739.1998.96237.x

    Article  Google Scholar 

  • Olivero AM, Hix DM (1998) Influence of aspect and stand age ground flora of southeastern Ohio forest ecosystems. Plant Ecol 139:177–187. doi:10.1023/A:1009758501201

    Article  Google Scholar 

  • Pérez-García EA, Meave J, Gallardo C (2001) Vegetación y flora de la región de Nizanda, Istmo de Tehuantepec, Oaxaca, México. Acta Bot Mex 56:19–88

    Google Scholar 

  • Pérez-García EA, Meave JA, Gallardo-Cruz JA (2005) Diversidad beta y diferenciación florística en un paisaje complejo del trópico estacionalmente seco del sur de México. In: Halffter G, Soberón J, Koleff P, Melic A (eds) Sobre diversidad biológica: el significado de las diversidades alfa beta y gamma. Comisión Nacional para el Conocimiento y Uso de la Biodiversidad and Sociedad Entomológica Aragonesa, Zaragoza, pp 123–142

    Google Scholar 

  • Pianka ER (2000) Evolutionary ecology. Addison Wesley Longman, San Francisco

    Google Scholar 

  • Pierce KB Jr, Lookingbill T, Urban D (2005) A simple method for estimating potential relative radiation (PRR) for landscape-scale vegetation analysis. Landscape Ecol 20:137–147

    Article  Google Scholar 

  • Rahbek C (1995) The elevational gradient of species richness: a uniform pattern? Ecography 18:200–205. doi:10.1111/j.1600-0587.1995.tb00341.x

    Article  Google Scholar 

  • Ricklefs RE, Miller GL (2000) Ecology. Freeman, New York

    Google Scholar 

  • Romero-Centeno R, Zavala-Hidalgo J, Gallegos A, O’Brien JJ (2003) Isthmus of Tehuantepec wind climatology and ENSO signal. J Clim 16:2628–2639

    Article  Google Scholar 

  • Salas-Morales SH, Saynes-Vásquez A, Schibli L (2003) Flora de la costa de Oaxaca, México: lista florística de la región de Zimatán. Bol Soc Bot Méx 72:21–58

    Google Scholar 

  • Sharma CM, Baduni NP (2000) Effect of aspect on the structure of some natural stands of Abies pindrow in Himalayan moist temperate forest. Environmentalist 20:309–317. doi:10.1023/A:1006765529832

    Article  Google Scholar 

  • Sokal RR, Rohlf FJ (1995) Biometry. Freeman, New York

    Google Scholar 

  • StatSoft Inc (1998) STATISTICA for Windows. Tulsa, Oklahoma

  • Sternberg M, Shoshany M (2001) Influence of slope aspect on Mediterranean woody formations: comparison of a semiarid and an arid site in Israel. Ecol Res 16:335–345. doi:10.1046/j.1440-1703.2001.00393.x

    Article  Google Scholar 

  • Stoutjesdijk PH, Barkman JJ (1992) Microclimate: vegetation and fauna. Opulus Press, Uppsala

    Google Scholar 

  • Suzaki T, Kume A, Ino Y (2005) Effects of slope and canopy trees on light conditions and biomass of dwarf bamboo under a coppice canopy. J For Res 10:151–156. doi:10.1007/s10310-004-0123-x

    Article  Google Scholar 

  • Trejo I (2005) Análisis de la diversidad de la selva baja caducifolia en México. In: Halffter G, Soberón J, Koleff P, Melic A (eds) Sobre diversidad biológica: el significado de las diversidades alfa beta y gamma. Comisión Nacional para el Conocimiento y Uso de la Biodiversidad and Sociedad Entomológica Aragonesa, Zaragoza, pp 111–122

    Google Scholar 

  • Trejo I, Dirzo R (2002) Floristic diversity of Mexican seasonally dry tropical forest. Biodivers Conserv 11:2063–2084. doi:10.1023/A:1020876316013

    Article  Google Scholar 

  • Urban DL, Miller C, Halpin PN, Stephenson NL (2000) Forest gradient response in Sierran landscapes: the physical template. Landscape Ecol 15:603–620. doi:10.1023/A:1008183331604

    Article  Google Scholar 

  • Van Niel KP, Laffan SW, Lees BG (2004) Effect of error in the DEM on environmental variables for predictive vegetation modelling. J Veg Sci 15:747–756. doi:10.1658/1100-9233(2004)015[0747:EOEITD]2.0.CO;2

    Google Scholar 

  • Vázquez-G JA, Givnish TJ (1998) Altitudinal gradients in tropical forest composition, structure, and diversity in the Sierra de Manantlán. J Ecol 86:999–1020. doi:10.1046/j.1365-2745.1998.00325.x

    Article  Google Scholar 

  • Villaseñor JL (2003) Diversidad y distribución de las Magnoliophyta de México. Interciencia 28:160–167

    Google Scholar 

  • Vogiatzakis IN, Griffiths GH, Mannion AM (2003) Environmental factors and vegetation composition, Lefka Ori massif, Crete, S Aegean. Glob Ecol Biogeogr 12:131–146. doi:10.1046/j.1466-822X.2003.00021.x

    Article  Google Scholar 

  • Walter H (1973) Vegetation of the Earth. Springer, New York

    Google Scholar 

  • Whittaker RH (1960) Vegetation of the Siskiyou Mountains, Oregon and California. Ecol Monogr 30:279–338. doi:10.2307/1943563

    Article  Google Scholar 

  • Whittaker RH (1972) Evolution and measurement of species diversity. Taxon 21:213–251. doi:10.2307/1218190

    Article  Google Scholar 

  • Yeakley JA, Hornberger GM, Swank WT, Bolstad PV, Vose JM (2000) Soil moisture modelling in humid mountainous landscapes. In: Wilson JP, Gallant JC (eds) Terrain analysis: principles and applications. Wiley, New York, pp 205–224

    Google Scholar 

Download references

Acknowledgments

We are grateful to A. Martínez-Yrízar and P. Balvanera for commenting on a previous draft of this manuscript, and to the people of Nizanda for their hospitality and support. L. Ochoa-Ochoa assisted in the field and M. Romero-Romero helped in database management. This study received financial support from CONACyT-SEMARNAT (2002-C01-0267) and PAPIIT-UNAM (IN-221503 and IN-216007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Alberto Gallardo-Cruz.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOC 480 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Gallardo-Cruz, J.A., Pérez-García, E.A. & Meave, J.A. β-Diversity and vegetation structure as influenced by slope aspect and altitude in a seasonally dry tropical landscape. Landscape Ecol 24, 473–482 (2009). https://doi.org/10.1007/s10980-009-9332-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10980-009-9332-1

Keywords

  • Environmental heterogeneity
  • Oaxaca State
  • Mexico
  • Plant diversity
  • Potential energy income modelling
  • Seasonally dry tropical forest
  • Topography
  • Vegetation structure
  • α-Diversity
  • γ-Diversity