Landscape Ecology

, Volume 24, Issue 3, pp 391–403 | Cite as

Assessing topographic patterns in moisture use and stress using a water balance approach

Research Article

Abstract

Through its control on soil moisture patterns, topography’s role in influencing forest composition is widely recognized. This study addresses shortcomings in traditional moisture indices by employing a water balance approach, incorporating topographic and edaphic variability to assess fine-scale moisture demand and moisture availability. Using GIS and readily available data, evapotranspiration and moisture stress are modeled at a fine spatial scale at two study areas in the US (Ohio and North Carolina). Model results are compared to field-based soil moisture measurements throughout the growing season. A strong topographic pattern of moisture utilization and demand is uncovered, with highest rates of evapotranspiration found on south-facing slopes, followed by ridges, valleys, and north-facing slopes. South-facing slopes and ridges also experience highest moisture deficit. Overall higher rates of evapotranspiration are observed at the Ohio site, though deficit is slightly lower. Based on a comparison between modeled and measured soil moisture, utilization and recharge trends were captured well in terms of both magnitude and timing. Topographically controlled drainage patterns appear to have little influence on soil moisture patterns during the growing season. In addition to its ability to accurately capture patterns of soil moisture in both high-relief and moderate-relief environments, a water balance approach offers numerous advantages over traditional moisture indices. It assesses moisture availability and utilization in absolute terms, using readily available data and widely used GIS software. Results are directly comparable across sites, and although output is created at a fine-scale, the method is applicable for larger geographic areas. Since it incorporates topography, available water capacity, and climatic variables, the model is able to directly assess the potential response of vegetation to climate change.

Keywords

Water budget Evapotranspiration Soil moisture Solar radiation Species-environment relationships Climate change Topography Deciduous forests Coweeta Ohio 

References

  1. Allen RB, Peet RK, Baker WL (1991) Gradient analysis of latitudinal variation in southern rocky mountain forests. J Biogeogr 18:123–139. doi:10.2307/2845287 CrossRefGoogle Scholar
  2. Amatya DM, Skaggs RW, Gregory JD (1995) Comparison of methods for estimating REF-ET. J Irrig Drain Eng, ASCE 121:427–435. doi:10.1061/(ASCE)0733-9437(1995)121:6(427) CrossRefGoogle Scholar
  3. American Society of Civil Engineers (1990) Evapotranspiration and irrigation water requirements. American Society of Civil Engineers, New YorkGoogle Scholar
  4. Beven KJ, Kirkby MJ (1979) A physically based, variable contributing area model of basin hydrology. Hydrol Sci Bull 24:43–69CrossRefGoogle Scholar
  5. Campbell Scientific (1996) CS615 water content reflectometer instruction manual. Campbell Scientific Inc., Logan UTGoogle Scholar
  6. Chamran F, Gessler PE, Chadwick OA (2002) Spatially explicit treatment of soil-water dynamics along a semiarid catena. Soil Sci Soc Am J 66:1571–1583Google Scholar
  7. Coweeta LTER (2008) Data catalog: Coweeta climate (1011), Terrestrial gradient microclimate measurements (1013), Continuously measured forest soil moisture at four sites in the Coweeta basin (1040). URL: http://coweeta.ecology.uga.edu/
  8. Currie DJ (1991) Energy and large-scale patterns of animal- and plant-species richness. Am Nat 137:27–49. doi:10.1086/285144 CrossRefGoogle Scholar
  9. Daly C, Gibson WP, Taylor GH, Johnson GL, Pasteris P (2002) A knowledge-based approach to the statistical mapping of climate. Clim Res 22:99–113. doi:10.3354/cr022099 CrossRefGoogle Scholar
  10. Day FP, Monk CD (1974) Vegetation patterns on a southern Appalachian watershed. Ecology 55:1064–1074. doi:10.2307/1940356 CrossRefGoogle Scholar
  11. Devices Decagon (2006) ECH2O soil moisture sensor operator’s manual. Decagon Devices Inc., Pullman WAGoogle Scholar
  12. Dyer JM (1995) Assessment of climatic warming using a model of forest species migration. Ecol Modell 79:199–219. doi:10.1016/0304-3800(94)00038-J CrossRefGoogle Scholar
  13. Dyer JM (2002) A comparison of moisture scalars and water budget methods to assess vegetation-site relationships. Phys Geogr 23:245–258. doi:10.2747/0272-3646.23.3.245 CrossRefGoogle Scholar
  14. Dyer JM (2004) A water budget approach to predicting tree species growth and abundance, utilizing paleoclimatology sources. Clim Res 28:1–10. doi:10.3354/cr028001 CrossRefGoogle Scholar
  15. Dyer JM (2006) Revisiting the deciduous forests of eastern North America. Bioscience 56:341–352. doi:10.1641/0006-3568(2006)56[341:RTDFOE]2.0.CO;2 CrossRefGoogle Scholar
  16. Dyer ML, Meentemeyer V, Borg B (1990) Apparent controls of mass loss rate of leaf litter on a regional scale: litter quality versus climate. Scand J For Res 5:311–323. doi:10.1080/02827589009382615 CrossRefGoogle Scholar
  17. ESRI (2006) What is ArcGIS 9.2? URL: http://www.esri.com/library/books/what-is-arcgis92.pdf
  18. Federer CA, Vörösmarty C, Fekete B (1996) Intercomparison of methods for calculating potential evaporation in regional and global water balance models. Water Resour Res 32:2315–2321CrossRefGoogle Scholar
  19. Fisher JB, DiBiase TA, Qi Y, Xu M, Goldstein AH (2005) Evapotranspiration models compared on a Sierra Nevada forest ecosystem. Environ Model Softw 20:783–796. doi:10.1016/j.envsoft.2004.04.009 CrossRefGoogle Scholar
  20. Florinsky IV, Eilers RG, Manning GR, Fuller LG (2002) Prediction of soil properties by digital terrain modelling. Environ Model Softw 17:295–311. doi:10.1016/S1364-8152(01)00067-6 CrossRefGoogle Scholar
  21. Frank DA, Inouye RS (1994) Temporal variation in actual evapotranspiration of terrestrial ecosystems: patterns and ecological implications. J Biogeogr 21:401–411. doi:10.2307/2845758 CrossRefGoogle Scholar
  22. Gale MR, Grigal DF (1987) Vertical root distributions of northern tree species in relation to successional status. Can J For Res 17:829–834. doi:10.1139/x87-131 CrossRefGoogle Scholar
  23. Gates DM (1980) Biophysical ecology. Springer-Verlag, New YorkGoogle Scholar
  24. Hack JT, Goodlet JC (1960) Geomorphology and forest ecology of a mountain region in the central Appalachians. Geological survey professional paper 347. Government Printing Office, Washington DCGoogle Scholar
  25. Helvey JD, Patric JH (1988) Research on interception losses and soil moisture relationships. In: Swank WT, Crossley DA (eds) Forest hydrology and ecology at Coweeta. Springer-Verlag, New York, pp 129–137Google Scholar
  26. Helvey JD, Hewlett JD, Douglass JE (1972) Predicting soil moisture in the southern Appalachians. Soil Sci Soc Am Proc 36:954–959CrossRefGoogle Scholar
  27. Iverson LR, Dale ME, Scott CT, Prasad A (1997) A GIS-derived integrated moisture index to predict forest composition and productivity of Ohio forests (USA). Landscape Ecol 12:331–348. doi:10.1023/A:1007989813501 CrossRefGoogle Scholar
  28. Jackson RB, Canadell J, Ehleringer JR, Mooney HA, Sala OE, Schulze ED (1996) A global analysis of foot distributions for terrestrial biomes. Oecologia 108:389–411. doi:10.1007/BF00333714 CrossRefGoogle Scholar
  29. Kessell SR (1979) Gradient modeling: resource and fire management. Springer-Verlag, New YorkGoogle Scholar
  30. Lookingbill T, Urban D (2004) An empirical approach towards improved spatial estimates of soil moisture for vegetation analysis. Landscape Ecol 19:417–433. doi:10.1023/B:LAND.0000030451.29571.8b CrossRefGoogle Scholar
  31. Lookingbill T, Urban D (2005) Gradient analysis, the next generation: towards more plant-relevant explanatory variables. Can J For Res 35:1744–1753. doi:10.1139/x05-109 CrossRefGoogle Scholar
  32. Lu J, Sun G, McNulty SG, Amatya DM (2003) Modeling actual evapotranspiration from forested watersheds across the southeastern United States. J Am Water Resour Assoc 39:887–896. doi:10.1111/j.1752-1688.2003.tb04413.x CrossRefGoogle Scholar
  33. Lu J, Sun G, McNulty SG, Amatya DM (2005) A comparison of six potential evapotranspiration methods for regional use in the southeastern United States. J Am Water Resour Assoc 41:621–633. doi:10.1111/j.1752-1688.2005.tb03759.x CrossRefGoogle Scholar
  34. Lucht TE, Brown DL, Martin NH (1985) Soil survey of Athens County, Ohio. US Government Printing Office. USDA Soil Conservation Service, Washington DCGoogle Scholar
  35. Manogaran C (1975) Actual evapotranspiration and the natural range of loblolly pine. For Sci 21:339–340Google Scholar
  36. Mather JR (1974) Climatology: fundamentals and applications. McGraw-Hill, New YorkGoogle Scholar
  37. Mather JR, Yoshioka GA (1968) The role of climate in the distribution of vegetation. Ann Assoc Am Geogr 58:29–41. doi:10.1111/j.1467-8306.1968.tb01634.x CrossRefGoogle Scholar
  38. McCune B (2007) Improved estimates of incident radiation and heat load using non-parametric regression against topographic variables. J Veg Sci 18:751–754. doi:10.1658/1100-9233(2007)18[751:IEOIRA]2.0.CO;2 CrossRefGoogle Scholar
  39. McCune B, Keon D (2002) Equations for potential annual direct incident radiation and heat load. J Veg Sci 13:603–606. doi:10.1658/1100-9233(2002)013[0603:EFPADI]2.0.CO;2 CrossRefGoogle Scholar
  40. McLachlan JS, Clark JS, Manos PS (2005) Molecular indicators of tree migration capacity under rapid climate change. Ecology 86:2088–2098. doi:10.1890/04-1036 CrossRefGoogle Scholar
  41. National Climatic Data Center (2002) United States Climate Normals, 1971–2000. National Oceanic and Atmospheric Administration, Climatography of the United States No. 81. Asheville NC, US. URL: http://www5.ncdc.noaa.gov/climatenormals/clim81/
  42. National Climatic Data Center (2008) State of the Climate. NCDC Climate Monitoring. URL: http://www.ncdc.noaa.gov/oa/climate/research/monitoring.html
  43. National Oceanic and Atmospheric Administration (2008) Benthic Terrain Modeler. URL: http://www.csc.noaa.gov/products/btm/
  44. National Renewable Energy Laboratory (2008) National Solar Radiation Database 1991–2005 Update. URL: http://rredc.nrel.gov/solar/old_data/nsrdb/1991-2005/
  45. Natural Resources Conservation Service, Soil Survey Staff (2008) Soil Survey Geographic (SSURGO) Database. United States Department of Agriculture. URL: http://soildatamart.nrcs.usda.gov
  46. Ohio Geographically Referenced Information Program (2008) Ohio Statewide Imagery Program. URL: http://ogrip.oit.ohio.gov/ServicesData/StatewideImagery/tabid/86/Default.aspx
  47. Park SJ, van de Giesen N (2004) Soil-landscape delineation to define spatial sampling domains for hillslope hydrology. J Hydrol (Amst) 295:28–46. doi:10.1016/j.jhydrol.2004.02.022 CrossRefGoogle Scholar
  48. Parker AJ (1982) The topographic relative moisture index: an approach to soil-moisture assessment in mountain terrain. Phys Geogr 3:160–168Google Scholar
  49. Parker AJ (1989) Forest/environment relationships in Lassen Volcanic National Park, California, USA. J Biogeogr 18:543–552. doi:10.2307/2845690 CrossRefGoogle Scholar
  50. Pearson RG (2006) Climate change and the migration capacity of species. Trends Ecol Evol 21:111–113. doi:10.1016/j.tree.2005.11.022 PubMedCrossRefGoogle Scholar
  51. Peet RK (1981) Forest vegetation of the Colorado front range. Vegetatio 45:3–75. doi:10.1007/BF00240202 CrossRefGoogle Scholar
  52. Pierce KB, Lookingbill T, Urban D (2005) A simple method for estimating potential relative radiation (PRR) for landscape-scale vegetation analysis. Landscape Ecol 20:137–147. doi:10.1007/s10980-004-1296-6 CrossRefGoogle Scholar
  53. Rosenzweig ML (1968) Net primary productivity of terrestrial communities: prediction from climatological data. Am Nat 102:67–74. doi:10.1086/282523 CrossRefGoogle Scholar
  54. SAS (2004) SAS 9.1.3 help and documentation. SAS Institute, Cary NCGoogle Scholar
  55. Scalia Laboratory for Atmospheric Analysis (2008) Archives. URL: http://www.scalialab.com/archives.html
  56. Shuttleworth WJ (1993) Evaporation. In: Maidment DR (ed) Handbook of hydrology. McGraw-Hill, New York, pp 4.1–4.53Google Scholar
  57. Stephenson NL (1990) Climatic control of vegetation distribution: the role of the water balance. Am Nat 135:649–670CrossRefGoogle Scholar
  58. Stephenson NL (1998) Actual evapotranspiration and deficit: biologically meaningful correlates of vegetation distribution across spatial scales. J Biogeogr 25:855–870CrossRefGoogle Scholar
  59. Thelin GP, Pike RJ (1991) Landforms of the Conterminous United States—a digital shaded-reflect portrayal. US geological survey miscellaneous investigations map I-2206, US Department of the Interior, Washington DCGoogle Scholar
  60. Turc L (1961) Evaluation des besoins en eau d’irrigation, evapotranspiration potentielle, formule climatique simplifice et mise a jour. Ann Agron 12:13–49Google Scholar
  61. Urban DL, Miller C, Stephenson NL, Halpin PN (2000) Forest pattern in Sierran landscapes: the physical template. Landscape Ecol 15:603–620CrossRefGoogle Scholar
  62. US Geological Survey (2008) National Elevation Dataset. National Map Seamless Server. URL: http://seamless.usgs.gov/
  63. Vankat JL (1982) A gradient perspective on the vegetation of Sequoia National Park, California. Madroño 29:200–214Google Scholar
  64. Vörösmarty CJ, Federer CA, Schloss AL (1998) Potential evapotranspiration functions compared on US watersheds: possible implications for global-scale water balance and terrestrial ecosystem modeling. J Hydrol 207:147–169CrossRefGoogle Scholar
  65. Wentworth TR (1981) Vegetation on limestone and granite in the Mule Mountains, Arizona. Ecology 62:469–482CrossRefGoogle Scholar
  66. Western AW, Blöschl G (1999) On the spatial scaling of soil moisture. J Hydrol 217:203–224CrossRefGoogle Scholar
  67. Western AW, Grayson RB, Blöschl G (2002) Scaling of soil moisture: a hydrologic perspective. Annu Rev Earth Planet Sci 30:149–180CrossRefGoogle Scholar
  68. Whittaker RH (1956) Vegetation of the great smoky mountains. Ecol Monogr 26:1–80CrossRefGoogle Scholar
  69. Yeakley JA, Swank WT, Swift LW, Hornberger GM, Shugart HH (1998) Soil moisture gradients and controls on a southern Appalachian hillslope from drought through recharge. Hydrol Earth Syst Sci 2:41–49Google Scholar
  70. Zaslavsky D, Sinai G (1981) Surface hydrology. J Hydraul Div-ASCE 107:1–93Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Department of GeographyOhio UniversityAthensUSA

Personalised recommendations