Landscape Ecology

, 24:1123 | Cite as

Sacrificing patches for linear habitat elements enhances metapopulation performance of woodland birds in fragmented landscapes

  • Peter Schippers
  • Carla J. Grashof-Bokdam
  • Jana Verboom
  • Johannes M. Baveco
  • René Jochem
  • Henk A. M. Meeuwsen
  • Marjolein H. C. Van Adrichem
Research Article

Abstract

It is generally assumed that large patches of natural habitat are better for the survival of species than the same amount of habitat in smaller fragments or linear elements like hedges and tree rows. We use a spatially explicit individual-based model of a woodland bird to explore this hypothesis. We specifically ask whether mixtures of large, small and linear habitat elements are better for population performance than landscapes that consist of only large elements. With equal carrying capacity, metapopulations perform equally or better in heterogeneous landscape types that are a mix of linear, large and small habitat elements. We call this increased metapopulation performance of large and small elements “synergy”. These mixed conditions are superior because the small linear elements facilitate dispersal while patches secure the population in the long run because they have a lower extinction risk. The linear elements are able to catch and guide dispersing animals which results in higher connectivity between patches leading to higher metapopulation survival. Our results suggest that landscape designers should not always seek to conserve and create larger units but might better strive for more variable landscapes with mixtures of patch sizes and shapes. This is especially important when smaller units play a key role in connecting patches and dispersal through the matrix is poor.

Keywords

SLOSS Woodland birds Linear elements Hedgerows Patch size Metapopulation Dispersal Synergy Landscape design 

References

  1. Baveco JM (2006) Small steps movement model: manual Version 1.0. Alterra-Wageningen UR, Wageningen, p 19Google Scholar
  2. Baz A, GarciaBoyero A (1996) The SLOSS dilemma: a butterfly case study. Biodivers Conserv 5:493–502. doi:10.1007/BF00056393 CrossRefGoogle Scholar
  3. Bender DJ, Tischendorf L, Fahrig L (2003) Using patch isolation metrics to predict animal movement in binary landscapes. Landscape Ecol 18:17–39. doi:10.1023/A:1022937226820 CrossRefGoogle Scholar
  4. PJd Boer (1981) On the survival of populations in a heterogeneous and variable environment. Oecologia 50:39–53. doi:10.1007/BF00378792 CrossRefGoogle Scholar
  5. Chardon JP, Adriaensen F, Matthysen E (2003) Incorporating landscape elements into a connectivity measure: a case study for the Speckled wood butterfly (Pararge aegeria L.). Landscape Ecol 18:561–573. doi:10.1023/A:1026062530600 CrossRefGoogle Scholar
  6. Engen S, Lande R, Seather BE (2003) Demographic stochasticity and allee effects in populations with two sexes. Ecology 84:2378–2386. doi:10.1890/02-0123 CrossRefGoogle Scholar
  7. Etienne RS, Heesterbeek JAP (2000) On optimal size and number of reserves for metapopulation persistence. J Theor Biol 203:33–50. doi:10.1006/jtbi.1999.1060 PubMedCrossRefGoogle Scholar
  8. Flather CH, Bevers M (2002) Patchy reaction-diffusion and population abundance: the relative importance of habitat amount and arrangement. Am Nat 159:40–56. doi:10.1086/324120 PubMedCrossRefGoogle Scholar
  9. Grashof-Bokdam CJ, Chardon P, Vos CC, Foppen RPB, Wallisdevries MF, VanDerVeen M, Meeuwsen HAM (2008) The synergistic effect of combining woodlands and green veining for biodiversity. Landscape Ecol. doi:10.1007/s10980-008-9274-2 Google Scholar
  10. Grashof-Bokdam CJ, van Langevelde F (2005) Green veining: landscape determinants of biodiversity in European agricultural landscapes. Landscape Ecol 20:417–439. doi:10.1007/s10980-004-5646-1 CrossRefGoogle Scholar
  11. Haddad NM (1999) Corridor and distance effects on interpatch movements: a landscape experiment with butterflies. Ecol Appl 9:612–622. doi:10.1890/1051-0761(1999)009[0612:CADEOI]2.0.CO;2 CrossRefGoogle Scholar
  12. Kingsland SE (2002) Creating a science of nature reserve design: perspectives from history. Environ Model Assess 7:61–69. doi:10.1023/A:1015633830223 CrossRefGoogle Scholar
  13. Kosenko SM, Kaigorodova EY (2001) Effect of habitat fragmentation on distribution, density and breeding performance of the middle spotted woodpecker Dendrocopos medius (Alves, Picidae) in Nerussa-Desna Polesye. Zool Zh 80:71–78Google Scholar
  14. Kosinski Z, Ksit P (2006) Comparative reproductive biology of middle spotted woodpeckers Dendrocopos medius and great spotted woodpeckers D-major in a riverine forest. Bird Study 53:237–246CrossRefGoogle Scholar
  15. Langlois JP, Fahrig L, Merriam G, Artsob H (2001) Landscape structure influences continental distribution of hantavirus in deer mice. Landscape Ecol 16:255–266. doi:10.1023/A:1011148316537 CrossRefGoogle Scholar
  16. Lomolino MV (1994) An evaluation of alternative strategies for building networks of nature-reserves. Biol Conserv 69:243–249. doi:10.1016/0006-3207(94)90423-5 CrossRefGoogle Scholar
  17. MacArthur RH, Wilson EO (1967) The theory of island biogeography. Princeton University Press, PrincetonGoogle Scholar
  18. McCarthy MA, Thompson CJ, Possingham HP (2005) Theory for designing nature reserves for single species. Am Nat 165:250–257. doi:10.1086/427297 PubMedCrossRefGoogle Scholar
  19. McCarthy MA, Thompson CJ, Williams NSG (2006) Logic for designing nature reserves for multiple species. Am Nat 167:717–727. doi:10.1086/503058 PubMedCrossRefGoogle Scholar
  20. Müller W (1982) Die Besiedlung der Eichenwälder im Kanton Zurich durch den Mittelspecht Dendrocopus medius. Orn Beob 79:105–119Google Scholar
  21. Ovaskainen O (2002) Long-term persistence of species and the SLOSS problem. J Theor Biol 218:419–433PubMedGoogle Scholar
  22. Patterson BD, Atmar W (1986) Nested subsets and the structure of insular mammalian faunas and archipelagoes. Biol J Linn Soc Lond 28:65–82. doi:10.1111/j.1095-8312.1986.tb01749.x CrossRefGoogle Scholar
  23. Pettersson B (1985) Extinction of an isolated population of the middle spotted woodpecker Dendrocopos-Medius (L) in Sweden and its relation to general theories on extinction. Biol Conserv 32:335–353. doi:10.1016/0006-3207(85)90022-9 CrossRefGoogle Scholar
  24. Ricketts TH (2001) The matrix matters: Effective isolation in fragmented landscapes. Am Nat 158:87–99. doi:10.1086/320863 PubMedCrossRefGoogle Scholar
  25. Saether BE, Sutherland WJ, Engen S (2004) Climate influences on avian population dynamics. In: Moller AP, Fielder W, Berthold P (eds) Birds and climate change, pp 185–209Google Scholar
  26. Schippers P, Verboom J, Knaapen JP, vanApeldoorn RC (1996) Dispersal and habitat connectivity in complex heterogeneous landscapes: an analysis with a GIS-based random walk model. Ecography 19:97–106. doi:10.1111/j.1600-0587.1996.tb00160.x CrossRefGoogle Scholar
  27. Schultz CB, Crone EE (2005) Patch size and connectivity thresholds for butterfly habitat restoration. Conserv Biol 19:887–896. doi:10.1111/j.1523-1739.2005.00462.x CrossRefGoogle Scholar
  28. Shaffer ML (1981) Minimum population sizes for species conservation. Bioscience 31:131–134. doi:10.2307/1308256 CrossRefGoogle Scholar
  29. Soule M (1987) Viable populations for conservation. Cambridge University Press, CambridgeGoogle Scholar
  30. Tellería JL, Baquero R, Santos T (2003) Effects of forest fragmentation on European birds: implications of regional differences in species richness. J Biogeogr 30:621–628. doi:10.1046/j.1365-2699.2003.00960.x CrossRefGoogle Scholar
  31. Thomas CD, Cameron A, Green RE, Bakkenes M, Beaumont LJ, Collingham YC, Erasmus BFN, de Siqueira MF, Grainger A, Hannah L, Hughes L, Huntley B, van Jaarsveld AS, Midgley GF, Miles L, Ortega-Huerta MA, Peterson AT, Phillips OL, Williams SE (2004) Extinction risk from climate change. Nature 427:145–148. doi:10.1038/nature02121 PubMedCrossRefGoogle Scholar
  32. Thomas CD, Kunin WE (1999) The spatial structure of populations. J Anim Ecol 68:647–657. doi:10.1046/j.1365-2656.1999.00330.x CrossRefGoogle Scholar
  33. Tischendorf L, Bender DJ, Fahrig L (2003) Evaluation of patch isolation metrics in mosaic landscapes for specialist vs. generalist dispersers. Landscape Ecol 18:41–50. doi:10.1023/A:1022908109982 CrossRefGoogle Scholar
  34. Tischendorf L, Irmler U, Hingst R (1998) A simulation experiment on the potential of hedgerows as movement corridors for forest carabids. Ecol Modell 106:107–118. doi:10.1016/S0304-3800(97)00186-5 CrossRefGoogle Scholar
  35. Tischendorf L, Wissel C (1997) Corridors as conduits for small animals: attainable distances depending on movement pattern, boundary reaction and corridor width. Oikos 79:603–611. doi:10.2307/3546904 CrossRefGoogle Scholar
  36. Travis JMJ (2003) Climate change and habitat destruction: a deadly anthropogenic cocktail. Proc R Soc Lond B Biol Sci 270:467–473. doi:10.1098/rspb.2002.2246 CrossRefGoogle Scholar
  37. Tscharntke T, Steffan-Dewenter I, Kruess A, Thies C (2002) Contribution of small habitat fragments to conservation of insect communities of grassland-cropland landscapes. Ecol Appl 12:354–363Google Scholar
  38. Van Apeldoorn RC, Knaapen JP, Schippers P, Verboom J, Engen van H, Meeuwsen H (1998) Landscape planning and conservation biology; simulation models as tools to evaluate scenarios for badger in the Netherlands. Landscape Urban Plan 41:57–69. doi:10.1016/S0169-2046(97)00058-3 CrossRefGoogle Scholar
  39. VanDorp D, Schippers P, Groenendael van JM (1997) Migration rates of grassland plants along corridors in fragmented landscapes assessed with a cellular automation model. Landscape Ecol 12:39–50. doi:10.1007/BF02698206 CrossRefGoogle Scholar
  40. Verboom J, Foppen R, Chardon P, Opdam P, Luttikhuizen P (2001) Introducing the key patch approach for habitat networks with persistent populations: an example for marshland birds. Biol Conserv 100:89–101. doi:10.1016/S0006-3207(00)00210-X CrossRefGoogle Scholar
  41. Vos CC, Verboom J, Opdam PFM, Ter Braak CJF (2001) Toward ecologically scaled landscape indices. Am Nat 157:24–41. doi:10.1086/317004 PubMedCrossRefGoogle Scholar
  42. Wiens JA (1995) Landscape mosaics and ecological theory. In: Hansson L, Fahrig L, Merriam G (eds) Mosaic landscapes and ecological processes. Chapman and Hall, London, pp 1–26Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Peter Schippers
    • 1
  • Carla J. Grashof-Bokdam
    • 1
  • Jana Verboom
    • 1
  • Johannes M. Baveco
    • 1
  • René Jochem
    • 1
  • Henk A. M. Meeuwsen
    • 1
  • Marjolein H. C. Van Adrichem
    • 1
  1. 1.Alterra, Landscape CentreWageningen University and Research CentreWageningenThe Netherlands

Personalised recommendations