Landscape Ecology

, Volume 23, Issue 10, pp 1257–1276 | Cite as

Predicting land cover change and avian community responses in rapidly urbanizing environments

  • Jeffrey A. HepinstallEmail author
  • Marina Alberti
  • John M. Marzluff
Research Article


We used an integrated modeling approach to simulate future land cover and predict the effects of future urban development and land cover on avian diversity in the Central Puget Sound region of Washington State, USA. We parameterized and applied a land cover change model (LCCM) that used output from a microsimulation model of urban development, UrbanSim, and biophysical site and landscape characteristics to simulate land cover 28 years into the future. We used 1991, 1995, and 1999 Landsat TM-derived land cover data and three different spatial partitions of our study area to develop six different estimations of the LCCM. We validated model simulations with 2002 land cover. We combined UrbanSim land use outputs and LCCM simulations to predict changes in avian species richness. Results indicate that landscape composition and configuration were important in explaining land cover change as well as avian species response to landscape change. Over the next 28 years, urban land cover was predicted to increase at the expense of agriculture and deciduous and mixed lowland forests. Land cover changes were predicted to reduce the total number of avian species, with losses primarily in native forest specialists and gains in common synanthropic species such as the American Crow (Corvus brachyrhynchos). The integrated modeling framework we present has potential applications in urban and natural resource planning and management and in assessing of the effects of policies on land development, land cover, and avian biodiversity.


Land cover change Land cover modeling Avian biodiversity Urban ecology Urban development Seattle Puget Sound Multinomial logit 



We thank Stefan Coe and Urban Ecology Research Lab staff and students for critical input. We thank Paul Waddell, David Socha, Hana Ševčíková, and Center for Urban Simulation and Policy Analysis staff. We thank Roarke Donnelly, Tina Blewett, Cara Ianni, Kara Whittaker, Jack DeLap, Stan Rullman, Thomas Unfried, and Dave Oleyar for their help collecting avian field data. We thank Lucy Hutyra, Steven Walters, and Pete Bettinger for comments on earlier drafts. This research was supported by the National Science Foundation (DEB-9875041, BCS-0120024, IGERT-0114351), the University of Washington (Tools for Transformation Fund), and the University of Washington’s College of Forest Resources, particularly its Rachel Woods Endowed Graduate Program and the Denman Sustainable Resource Sciences Professorship. This manuscript benefitted from the comments from three anonymous reviewers.


  1. Alberti M (2008) Advances in urban ecology: integrating humans and ecological processes in urban ecosystems. Springer, New YorkGoogle Scholar
  2. Alberti M, Marzluff JM (2004) Ecological resilience in urban ecosystems: Linking urban patterns to human and ecological functions. Urban Ecosyst 7:241–265. doi: 10.1023/B:UECO.0000044038.90173.c6 CrossRefGoogle Scholar
  3. Alberti M, Marzluff JM, Shulenberger E, Bradley G, Ryan C, ZumBrunnen C (2003) Integrating humans into ecology: opportunities and challenges for studying urban ecosystems. Bioscience 53:1169–1179. doi: 10.1641/0006-3568(2003)053[1169:IHIEOA]2.0.CO;2 CrossRefGoogle Scholar
  4. Alberti M, Marzluff JM, Waddell P et al. (2006) Modeling interactions among urban development, land-cover change, and bird diversity. NSF Final Report BE/CNH 0120024Google Scholar
  5. Almeida CM, Batty M, Monteiro AM, Camara G, Soares-Filho BS, Cerqueira GC, Pennachin CL (2003) Stochastic cellular automata modeling of urban land use dynamics: empirical development and estimation. Comput Environ Urban Syst 27:481–509. doi: 10.1016/S0198-9715(02)00042-X CrossRefGoogle Scholar
  6. Baker JP, Landers DH (2004) Alternative futures analysis for the Willamette River Basin, Oregon. Ecol Appl 14:311–312. doi: 10.1890/02-5008 CrossRefGoogle Scholar
  7. Black A, Morgan P, Hessburg P (2003) Social and biophysical correlates of change in forest landscapes of the interior Columbia Basin USA. Ecol Appl 13:51–67. doi: 10.1890/1051-0761(2003)013[0051:SABCOC]2.0.CO;2 CrossRefGoogle Scholar
  8. Blewett CM, Marzluff JM (2005) Effects of urban sprawl on snags and the abundance and productivity of cavity-nesting birds. Condor 107:677–692. doi: 10.1650/0010-5422(2005)107[0678:EOUSOS]2.0.CO;2 CrossRefGoogle Scholar
  9. Brown DG, Pijanowski BC, Duh JD (2000) Modeling the relationships between land-use and land-cover on private lands in the Upper Midwest, USA. J Environ Manag 59:247–263. doi: 10.1006/jema.2000.0369 CrossRefGoogle Scholar
  10. Brown DG, Walker R, Manson S, Seto K (2004) Modeling land use and land cover change. In: Gutman G, Janetos A, Justice C, Moran E, Mustard J, Rindfuss R, Skole D, Turner BLII (eds) Land change science: observing, monitoring, and understanding trajectories of change on the Earth’s surface. Kluwer Academic Publishers, Dordrecht, pp 395–409Google Scholar
  11. Brown DG, Johnson KM, Loveland TR, Theobald DM (2005) Rural land-use trends in the conterminous United States, 1950–2000. Ecol Appl 15:1851–1863. doi: 10.1890/03-5220 CrossRefGoogle Scholar
  12. Clark Labs (2006) Idrisi 15: the Andes edition. Clark University, WorcesterGoogle Scholar
  13. Clark JS, Carpenter SR, Barber M et al (2001) Ecological forecasts: an emerging imperative. Science 293:657–660. doi: 10.1126/science.293.5530.657 PubMedCrossRefGoogle Scholar
  14. Clarke KC, Gaydos LJ (1998) Loose-coupling a cellular automaton model and GIS: long-term urban growth predictions for San Francisco and Baltimore. Int J Geogr Inf Sci 12:699–714. doi: 10.1080/136588198241617 PubMedCrossRefGoogle Scholar
  15. Clarke KC, Hoppen S, Gaydos L (1997) A self-modifying cellular automaton model of historical urbanization in the San Francisco Bay area. Environ Plann B 24:247–261. doi: 10.1068/b240247 CrossRefGoogle Scholar
  16. Donnelly RE, Marzluff JM (2004a) Importance of reserve size and landscape context to urban bird conservation. Conserv Biol 18:733–745. doi: 10.1111/j.1523-1739.2004.00032.x CrossRefGoogle Scholar
  17. Donnelly RE, Marzluff JM (2004b) Designing research to advance the management of birds in urbanizing areas. In: Shaw WW, Harris LK, Vandruff L (eds). Proceedings of the 4th international symposium on urban wildlife conservation, May 1–5, 1999. University of Arizona Press, Tuscon, pp 114–122Google Scholar
  18. Donnelly RE, Marzluff JM (2006) Relative importance of habitat quantity, structure, and spatial pattern to birds in urbanizing environments. Urban Ecosyst 9:99–117. doi: 10.1007/s11252-006-7904-2 CrossRefGoogle Scholar
  19. Dunning JB Jr, Stewart DJ, Danielson BJ, Noon BR, Root TL, Lamberson RH, Stevens EE (1995) Spatially explicit population models: current forms and future uses. Ecol Appl 5:3–11. doi: 10.2307/1942045 CrossRefGoogle Scholar
  20. van Eck JR, Koomen E (2008) Characterising urban concentration and land-use diversity in simulations of future land use. Ann Reg Sci 42:123–140. doi: 10.1007/s00168-007-0141-7 CrossRefGoogle Scholar
  21. Ewing RH (1994) Characteristics, causes, and effects of sprawl: a literature review. Environ Urban Stud 21:1–17Google Scholar
  22. Fahrig L, Merriam HG (1994) Conservation of fragmented populations. Conserv Biol 8:50–59. doi: 10.1046/j.1523-1739.1994.08010050.x CrossRefGoogle Scholar
  23. Foley JA, Ruth D, Asner GP et al (2005) Global consequences of land use. Science 309:570–574. doi: 10.1126/science.1111772 PubMedCrossRefGoogle Scholar
  24. Franklin JF, Dyrness CT (1988) Natural vegetation of Oregon and Washington. Oregon State University Press, CorvallisGoogle Scholar
  25. Goeghegan J, Wainger LA, Bockstael NE (1997) Spatial landscape indices in a hedonic framework: an ecological economics analysis using GIS. Ecol Econ 23:251–264. doi: 10.1016/S0921-8009(97)00583-1 CrossRefGoogle Scholar
  26. Goeghegan J, Cortina Villar S, Klepeis P, Macario Mendoza P, Ogneva-Himmelberger Y, Chowdhury RR, Turner BLII, Vance C (2001) Modeling tropical deforestation in the southern Yucatan peninsular region: comparing survey and satellite data. Agric Ecosyst Environ 85:25–46. doi: 10.1016/S0167-8809(01)00201-8 CrossRefGoogle Scholar
  27. Green WH (2003) Econometric analysis. Prentice Hall, New YorkGoogle Scholar
  28. Grimm NB, Grove JM, Pickett STA, Redman CL (2000) Integrated approaches to long-term studies of urban ecological systems. Bioscience 50:571–584. doi: 10.1641/0006-3568(2000)050[0571:IATLTO]2.0.CO;2 CrossRefGoogle Scholar
  29. Gutman G, Janetos A, Justice C, Moran E, Mustard J, Rindfuss R, Skole D, Turner IBL (eds) (2004) Land change science: observing, monitoring, and understanding trajectories of change on the Earth’s surface. Kluwer Academic Publishers, DordrechtGoogle Scholar
  30. Hagoort M, Geertman S, Ottens H (2008) Spatial externalities, neighbourhood rules and CA land-use modelling. Ann Reg Sci 42:39–56. doi: 10.1007/s00168-007-0140-8 CrossRefGoogle Scholar
  31. Hansen AJ, Rasker R, Maxwell B, Rotella JJ, Johnson JD, Parmenter AW, Langner U, Cohen WB, Lawrence RL, Kraska MPV (2002) Ecological causes and consequences of demographic change in the new west. Bioscience 52:151–162. doi: 10.1641/0006-3568(2002)052[0151:ECACOD]2.0.CO;2 CrossRefGoogle Scholar
  32. Hansen AJ, Knight RL, Marzluff JM, Powell S, Brown K, Gude PH, Jones KB (2005) Effects of exurban development on biodiversity: patterns, mechanisms, and research needs. Ecol Appl 15:1893–1905. doi: 10.1890/05-5221 CrossRefGoogle Scholar
  33. He HS (1999) The effects of seed dispersal on the simulation of long-term forest landscape change. Ecosystems (N Y Print) 2:308–319. doi: 10.1007/s100219900082 CrossRefGoogle Scholar
  34. Hepinstall JA, Marzluff JM, Alberti M (2008) Modeling the responses of birds to predicted changes in land cover in an urbanizing region. In: Millspaugh JJ, Thompson FR III (eds) Models for planning wildlife conservation in large landscapes. Elsevier Science, Burlington, MA, USA, pp 625–659Google Scholar
  35. Hepinstall JA, Marzluff JM, Alberti M (2009) Predicting avian community responses to increasing urbanization. Stud Avian Biol (in press)Google Scholar
  36. Houghton RA (1994) The worldwide extent of land-use change. Bioscience 44:305–313. doi: 10.2307/1312380 CrossRefGoogle Scholar
  37. Imhoff ML, Bounoua L, DeFries R, Lawrence WT, Stutzer D, Tucker CJ, Rickets T (2004) The consequences of urban land transformation on net primary productivity in the United States. Remote Sens Environ 89:434–443. doi: 10.1016/j.rse.2003.10.015 CrossRefGoogle Scholar
  38. Jenerette DG, Wu J (2001) Analysis and simulation of land-use change in the Central Arizona-Phoenix region. Landscape Ecol 16:611–626. doi: 10.1023/A:1013170528551 CrossRefGoogle Scholar
  39. Kaye JP, Groffman PM, Grimm NB, Baker LA, Pouyat RV (2006) A distinct urban biogeochemistry? Trends Ecol Evol 21:192–199. doi: 10.1016/j.tree.2005.12.006 PubMedCrossRefGoogle Scholar
  40. Luck M, Wu J (2002) A gradient analysis of urban landscape pattern: a case study from the Phoenix metropolitan region, Arizona, USA. Landscape Ecol 17:327. doi: 10.1023/A:1020512723753 CrossRefGoogle Scholar
  41. Manson SM, Geoghegan J, Turner BLII (2006) State of the art in describing future changes in ecosystem services: forecasting changes in land use and land cover. In: Mooney H, Cropper A (eds) Millennium ecosystem assessment: ecosystems and well-being (volume 2: Scenarios). Island Press, Geneva, pp 74–76Google Scholar
  42. Marzluff JM (2005) Island biogeography for an urbanizing world: how extinction and colonization may determine biological diversity in human-dominated landscapes. Urban Ecosyst 8:157–177. doi: 10.1007/s11252-005-4378-6 CrossRefGoogle Scholar
  43. Marzluff JM, Withey JC, Whittaker KA, Oleyar MD, Unfried TM, Rullman S, DeLap J (2008) Consequences of habitat utilization by nest predators and breeding songbirds across multiple scales in an urbanizing landscape. Condor 109:516–534. doi: 10.1650/8349.1 CrossRefGoogle Scholar
  44. Matlack GR (1993) Sociological edge effects: spatial distribution of human impact in suburban forest fragments. Environ Manag 17:829–835. doi: 10.1007/BF02393903 CrossRefGoogle Scholar
  45. McFadden D (1974) The measure of urban travel demand. J Public Econ 3:303–328. doi: 10.1016/0047-2727(74)90003-6 CrossRefGoogle Scholar
  46. McGarigal K, McComb WC (1995) Relationships between landscape structure and breeding birds in the Oregon coast range. Ecol Monogr 65:235–260. doi: 10.2307/2937059 CrossRefGoogle Scholar
  47. McGarigal K, Cushman SA, Neel MC, Ene E (2002) FRAGSTATS: spatial pattern analysis program for categorical maps. Computer software program produced by the authors at the University of Massachusetts, Amherst. Available at the following web site:
  48. Meyer WB, Turner BLII (1992) Human population growth and global land-use/cover change. Annu Rev Ecol Syst 23:39–61. doi: 10.1146/ CrossRefGoogle Scholar
  49. Mladenoff DJ (2004) LANDIS and forest landscape models. Ecol Model 180:7–19. doi: 10.1016/j.ecolmodel.2004.03.016 CrossRefGoogle Scholar
  50. Mörtberg U, Balfors B, Knol WC (2007) Landscape ecological assessment: a tool for integrating biodiversity issues in strategic environmental assessment and planning. J Environ Manag 82:457–470. doi: 10.1016/j.jenvman.2006.01.005 CrossRefGoogle Scholar
  51. Office of Financial Management State of Washington (2007) Population projections for Washington State. Available from (accessed 1 July 2008)
  52. Overmars KP, Verburg PH (2004) Analysis of land use drivers at the watershed and household level: linking two paradigms at the Philippine forest fringe. Int J Geogr Inf Sci 19:125–152. doi: 10.1080/13658810410001713380 CrossRefGoogle Scholar
  53. Overmars KP, de Koning GHJ, Veldkamp A (2003) Spatial autocorrelation in multi-scale land use models. Ecol Model 164:257–270. doi: 10.1016/S0304-3800(03)00070-X CrossRefGoogle Scholar
  54. Parker DC, Manson SM, Janssen MA, Hoffman M, Deadman P (2003) Multi-agent systems for the simulation of land-use and land-cover change: a review. Ann Assoc Am Geogr 93:314–337. doi: 10.1111/1467-8306.9302004 CrossRefGoogle Scholar
  55. Paul MJ, Meyer JL (2001) Streams in the urban landscape. Annu Rev Ecol Syst 32:333–365. doi: 10.1146/annurev.ecolsys.32.081501.114040 CrossRefGoogle Scholar
  56. Pearson SM, Turner MG, Drake JB (1999) Landscape change and habitat availability in the southern Appalachian highlands and Olympic peninsula. Ecol Appl 9:1288–1304. doi: 10.1890/1051-0761(1999)009[1288:LCAHAI]2.0.CO;2 CrossRefGoogle Scholar
  57. Pickett STA, Cadenasso ML, Grove JM et al (2001) Urban ecological systems: linking terrestrial ecological, physical, and socioeconomic components of metropolitan areas. Annu Rev Ecol Syst 32:127–157. doi: 10.1146/annurev.ecolsys.32.081501.114012 CrossRefGoogle Scholar
  58. Pijanowski BC, Brown DG, Shellito BA, Manik GA (2002) Using neural networks and GIS to forcast land use change: a land transformation model. Comput Environ Urban Syst 26:553–575CrossRefGoogle Scholar
  59. Pontius RG Jr, Cornell J, Hall C (2001) Modeling the spatial pattern of land-use change with GEOMOD2: application and validation for Costa Rica. Agric Ecosyst Environ 85:191–203. doi: 10.1016/S0167-8809(01)00183-9 CrossRefGoogle Scholar
  60. Pontius RG Jr, Huffaker D, Denman K (2004) Useful techniques of validation for spatially explicit land-change models. Ecol Model 179:445–461. doi: 10.1016/j.ecolmodel.2004.05.010 CrossRefGoogle Scholar
  61. Pontius RG Jr, Boersma W, Castella J-C et al (2008) Comparing the input, output, and validation maps for several models of land change. Ann Reg Sci 42:11–37. doi: 10.1007/s00168-007-0138-2 CrossRefGoogle Scholar
  62. Prato T (2005) Modeling ecological impacts of landscape change. Environ Model Softw 20:1359–1363CrossRefGoogle Scholar
  63. Radeloff VC, Hammer RB, Stewart SI (2005) Rural, suburban sprawl in the U.S. Midwest from 1940 to 2000 and its relation to forest fragmentation. Conserv Biol 19:793–805. doi: 10.1111/j.1523-1739.2005.00387.x CrossRefGoogle Scholar
  64. Revelt D, Train K (1998) Mixed logit with repeated choices of appliance efficiency levels. Rev Econ Stat 80:647–657. doi: 10.1162/003465398557735 CrossRefGoogle Scholar
  65. Robinson L, Newell JP, Marzluff JM (2005) Twenty-five years of sprawl in the Seattle region: growth management responses and implications for conservation. Landsc Urban Plan 71:51–72. doi: 10.1016/j.landurbplan.2004.02.005 CrossRefGoogle Scholar
  66. Sala OE, Chapin FSI, Armesto JJ et al (2000) Global biodiversity scenarios for the year 2100. Science 287:1770–1774. doi: 10.1126/science.287.5459.1770 PubMedCrossRefGoogle Scholar
  67. Schneider LC, Pontius RG Jr (2001) Modeling land-use change in the Ipswich Watershed, Massachusetts, USA. Agric Ecosyst Environ 85:83–94. doi: 10.1016/S0167-8809(01)00189-X CrossRefGoogle Scholar
  68. Schneider A, Seto KC, Webster DR (2005) Urban growth in Chengdu, Western China: application of remote sensing to assess planning and policy outcomes. Environ Plann B Plann Des 32:323–345. doi: 10.1068/b31142 CrossRefGoogle Scholar
  69. Schumaker NH, Ernst T, White D, Baker J, Haggerty P (2004) Projecting wildlife responses to alternative future landscapes in Oregon’s Willamette Basin. Ecol Appl 14:381–400. doi: 10.1890/02-5010 CrossRefGoogle Scholar
  70. Scott JM, Davis F, Csuti B et al. (1993) Gap analysis—a geographic approach to protection of biological diversity. Wildl Monogr 123:1–41Google Scholar
  71. Seto KC, Fragkias M (2005) Quantifying spatiotemporal patterns of urban land-use change in four cities of China with time series landscape metrics. Landscape Ecol 20:871–888. doi: 10.1007/s10980-005-5238-8 CrossRefGoogle Scholar
  72. Southworth J, Munroe DK, Nagendra H (2004) Land cover change and landscape fragmentation—comparing the utility of continuous and discrete analyses for a western Honduras region. Agric Ecosyst Environ 101:185–205. doi: 10.1016/j.agee.2003.09.011 CrossRefGoogle Scholar
  73. Spies TA, Ripple WJ, Bradshaw GA (1994) Dynamics and pattern of a managed coniferous forest landscape in Oregon. Ecol Appl 4:555–568. doi: 10.2307/1941957 CrossRefGoogle Scholar
  74. Train KE (2003) Discrete choice methods with simulation. Cambridge University Press, CambridgeGoogle Scholar
  75. Turner MG (2005) Landscape ecology: what is the state of the science? Annu Rev Ecol Syst 36:319–344. doi: 10.1146/annurev.ecolsys.36.102003.152614 CrossRefGoogle Scholar
  76. Turner MG, Wear DN, Flamm RO (1996) Land ownership and land-cover change in the southern Appalachian highlands and the Olympic peninsula. Ecol Appl 6:1150–1172. doi: 10.2307/2269599 CrossRefGoogle Scholar
  77. Verburg PH, de Koning GHJ, Kok K, Veldkamp A, Bouma J (1999) A spatially explicit allocation procedure for modelling the pattern of land use change based upon actual land use. Ecol Model 116:45–61. doi: 10.1016/S0304-3800(98)00156-2 CrossRefGoogle Scholar
  78. Verburg PH, Schot PP, Dijst MJ, Veldkamp A (2004) Land use change modelling: current practice and research priorities. GeoJournal 61:309–324. doi: 10.1007/s10708-004-4946-y CrossRefGoogle Scholar
  79. Verburg PH, Eickhout B, VanMeijl H (2008) A multi-scale, multi-model approach for analyzing the future dynamics of European land use. Ann Reg Sci 42:57–77. doi: 10.1007/s00168-007-0136-4 CrossRefGoogle Scholar
  80. Villard M-A, Trzcinski MK, Merriam HG (1999) Fragmentation effects on forest birds: relative influence of woodland cover and configuration on landscape occupancy. Conserv Biol 13:774–783. doi: 10.1046/j.1523-1739.1999.98059.x CrossRefGoogle Scholar
  81. Waddell P (2002) UrbanSim: modeling urban development for land use, transportation and environmental planning. J Am Plann Assoc 68:297–314. doi: 10.1080/01944360208976274 CrossRefGoogle Scholar
  82. Waddell P, Ulfarson GF (2003) Introduction to urban simulation: design and development of operational models. In: Stopher P, Button K, Kingsley K, Hensher D (eds) Handbook in transport, vol 5. Transport geography and spatial systems. Pergamon Press, New YorkGoogle Scholar
  83. Waddell P, Borning A, Noth M, Freier N, Becke M, Ulfarson GF (2003) Microsimulation of urban development and location choices: design and implementation of UrbanSim. Netw Spat Econ 3:43–67. doi: 10.1023/A:1022049000877 CrossRefGoogle Scholar
  84. Walsh S, Entwisle B, Rindfuss R, Page P (2006) Spatial simulation modelling of land use/land cover change scenarios in northeastern Thailand: a cellular automata approach. J Land Use Sci 1:5–28. doi: 10.1080/17474230600604213 CrossRefGoogle Scholar
  85. Wear DN, Bolstad P (1998) Land-use changes in southern Appalachian landscapes: spatial analysis and forecast evaluation. Ecosystems (N Y, Print) 1:575–594. doi: 10.1007/s100219900052 CrossRefGoogle Scholar
  86. Wear DN, Turner MG, Naiman RJ (1998) Land cover along an urban-rural gradient: implications for water quality. Ecol Appl 8:619–630Google Scholar
  87. White D, Minotti PG, Barczak MJ, Sifneos JC, Freemark KE, Santelmann MV, Steinitz CF, Kiester AR, Preston EM (1997) Assessing risks to biodiversity from future landscape change. Conserv Biol 11:349–360. doi: 10.1046/j.1523-1739.1997.95458.x CrossRefGoogle Scholar
  88. Wimberly MC, Ohmann JL (2004) A multi-scale assessment of human and environmental constraints on forest land cover change on the Oregon (USA) coast range. Landscape Ecol 19:631–646. doi: 10.1023/B:LAND.0000042904.42355.f3 CrossRefGoogle Scholar
  89. Wu J, David JL (2002) A spatially explicit hierarchical approach to modeling complex ecological systems: theory and applications. Ecol Model 153:7–26CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Jeffrey A. Hepinstall
    • 1
    Email author
  • Marina Alberti
    • 2
  • John M. Marzluff
    • 3
  1. 1.Warnell School of Forestry and Natural ResourcesUniversity of GeorgiaAthensUSA
  2. 2.Department of Urban Design and Planning and Urban Ecology Research LaboratoryUniversity of WashingtonSeattleUSA
  3. 3.College of Forest ResourcesUniversity of WashingtonSeattleUSA

Personalised recommendations