Landscape Ecology

, Volume 24, Issue 2, pp 157–170 | Cite as

The influence of patch-delineation mismatches on multi-temporal landscape pattern analysis

  • Julia LinkeEmail author
  • Gregory J. McDermid
  • Alysha D. Pape
  • Adam J. McLane
  • David N. Laskin
  • Mryka Hall-Beyer
  • Steven E. Franklin
Research article


Investigations of land-cover change often employ metrics designed to quantify changes in landscape structure through time, using analyses of land cover maps derived from the classification of remote sensing images from two or more time periods. Unfortunately, the validity of these landscape pattern analyses (LPA) can be compromised by the presence of spurious change, i.e., differences between map products caused by classification error rather than real changes on the ground. To reduce this problem, multi-temporal time series of land-cover maps can be constructed by updating (projecting forward in time) and backdating (projecting backward in time) an existing reference map, wherein regions of change are delineated through bi-temporal change analysis and overlaid onto the reference map. However, this procedure itself creates challenges, because sliver patches can occur in cases where the boundaries of the change regions do not exactly match the land-cover patches in the reference map. In this paper, we describe how sliver patches can inadvertently be created through the backdating and updating of land-cover maps, and document their impact on the magnitude and trajectory of four popular landscape metrics: number of patches (NP), edge density (ED), mean patch size (MPS), and mean shape index (MSI). In our findings, sliver patches led to significant distortions in both the value and temporal behaviour of metrics. In backdated maps, these distortions caused metric trajectories to appear more conservative, suggesting lower rates of change for ED and inverse trajectories for NP, MPS and MSI. In updated maps, slivers caused metric trajectories to appear more extreme and exaggerated, suggesting higher rates of change for all four metrics. Our research underscores the need to eliminate sliver patches from any study dealing with multi-temporal LPA.


Backdating Change analysis Landscape metrics Patch boundary Slivers Updating 



We gratefully acknowledge the support of the Natural Sciences and Engineering Research Council of Canada, the Alberta Innovation and Science Fund, and the many partners and colleagues in the Foothills Model Forest Grizzly Bear Research Program. Julia Linke was directly supported by a NSERC PGS B scholarship and an Alberta Ingenuity Award. Jerome Cranston offered technical support in the gathering and organizing of relevant geospatial materials and Guillermo Castilla provided many vital comments to this work. We also thank three anonymous reviewers and Dr. J. Wu for their constructive feedback to this analysis.


  1. Blaschke T (2005) Towards a framework for change detection based on image objects. In: Erasmi S, Cyffka B, Kappas M (eds) Göttinger Geographische Abhandlungen, vol 113, pp 1–9Google Scholar
  2. Boentje JP, Blinnikov MS (2007) Post-Soviet forest fragmentation and loss in the Green Belt around Moscow, Russia (1991–2001): a remote sensing perspective. Landsc Urban Plan 82:208–221. doi: 10.1016/j.landurbplan.2007.02.009 CrossRefGoogle Scholar
  3. Brown DG, Duh J-D, Drzyzga SA (2000) Estimating error in an analysis of forest fragmentation change using North American Landscape Characterization (NALC) data. Remote Sens Environ 71:106–117. doi: 10.1016/S0034-4257(99)00070-X CrossRefGoogle Scholar
  4. Buyantuyev A, Wu J (2007) Effects of thematic resolution on landscape pattern analysis. Landscape Ecol 22:7–13. doi: 10.1007/s10980-006-9010-5 CrossRefGoogle Scholar
  5. Carmel Y, Dean DJ, Flather CH (2001) Combining location and classification error sources for estimating multi-temporal database accuracy. Photogramm Eng Remote Sens 67:865–872Google Scholar
  6. Castilla G, Hay GJ, Ruiz-Gallardo JR (2008) Size-constrained region merging (SCRM): an automated delineation tool for assisted photointerpretation. Photogramm Eng Remote Sens 74:409–419Google Scholar
  7. Cayuela L, Golicher DJ, Benayas JMR, Gonzalez-Espinosa M, Ramirez-Marcial N (2006) Fragmentation, disturbance and tree diversity conservation in tropical montane forests. J Appl Ecol 43:1172–1181. doi: 10.1111/j.1365-2664.2006.01217.x CrossRefGoogle Scholar
  8. Chrisman NR (1989) Modelling error in overlaid maps. In: Goodchild MF, Goopal S (eds) Accuracy of spatial databases. CRC Press, London, UKGoogle Scholar
  9. Cohen WC, Goward SN (2004) Landsat’s role in ecological applications of remote sensing. Bioscience 54:535–546. doi: 10.1641/0006-3568(2004)054[0535:LRIEAO]2.0.CO;2 CrossRefGoogle Scholar
  10. Coppin PR, Bauer ME (1996) Digital change detection in forest ecosystems with remote sensing imagery. Remote Sens Rev 13:207–234Google Scholar
  11. Definiens AG (2006) Definiens 5.0 Professional. User Guide. Document version Munich, GermanyGoogle Scholar
  12. Desclée B, Bogaert P, Defourny P (2006) Forest change detection by statistical object-based method. Remote Sens Environ 102:1–11. doi: 10.1016/j.rse.2006.01.013 CrossRefGoogle Scholar
  13. Edwards G, Lowell KE (1996) Modelling uncertainty in photointerpreted boundaries. Photogramm Eng Remote Sens 62(4):337–391Google Scholar
  14. ESRI 2005. Esri ArcMap 9.1. Redlands, CA, USAGoogle Scholar
  15. Feranec J, Hazeu G, Christensen S, Jaffrain G (2007) Corine land-cover change detection in Europe (case studies of the Netherlands and Slovakia). Land Use Policy 24:234–247. doi: 10.1016/j.landusepol.2006.02.002 CrossRefGoogle Scholar
  16. Fortin M-J, Boots B, Csillag F, Remmel TK (2003) On the role of spatial stochasticmodels in understanding landscape indices in ecology. Oikos 102(1):203–212. doi: 10.1034/j.1600-0706.2003.12447.x CrossRefGoogle Scholar
  17. Franklin SE, Lavigne MB, Moskal LM, McCaffrey TM (2001) Interpretation of forest harvest conditions in New Brunswick using Landsat TM enhanced wetness difference imagery (EWDI). Can J Remote Sens 27:118–128Google Scholar
  18. Gardner RH, Milne BT, Turner MG, O’Neill RV (1987) Neutral models for the analysis of broad-scale landscape pattern. Landscape Ecol 1:19–28. doi: 10.1007/BF02275262 CrossRefGoogle Scholar
  19. Gergel SE (2006) New directions in landscape pattern analysis and linkages with remote sensing. In: Wulder MA, Franklin SE (eds) Understanding forest disturbance and spatial pattern. CRC, Taylor and Francis Group, Baton RougeGoogle Scholar
  20. Goodchild MF (1978) Statistical aspects of the polygon overlay problem. In: Dutton G (ed) Harvard papers on geographic information systems. Addison-Wesley, Reading, MAGoogle Scholar
  21. Goodchild MF (1980) The effects of generalization in geographical data encoding. In: Freeman A, Pieroni G (eds) Map data processing. Academic Press, New YorkGoogle Scholar
  22. Gustafson EJ (1998) Quantifying landscape spatial pattern: what is the state of the art? Ecosystems (NY, Print) 1:143–156. doi: 10.1007/s100219900011 CrossRefGoogle Scholar
  23. Hansen AJ, Neilson RP, Dale VH, Flather CH, Iverson LR, Currie DJ, Shafer S, Cook R, Bartlein PJ (2001) Global change in forests: responses of species, communities, and biomes. Bioscience 51(9):765–779CrossRefGoogle Scholar
  24. Hargis CD, Bissonette JA, David JL (1998) The behaviour of landscape metrics commonly used in the study of habitat fragmentation. Landscape Ecol 13:167–186CrossRefGoogle Scholar
  25. Hlavka CV, Livingston GP (1997) Statistical models of fragmented land cover and the effect of coarse spatial resolution on the estimation of area with satellite sensor imagery. Int J Remote Sens 18:2253–2259CrossRefGoogle Scholar
  26. Hobbs R, Wu J (2007) Perspectives and prospects of landscape ecology. In: Wu J, Hobbs R (eds) Key topics in landscape ecology. Cambridge University Press, Cambridge, UKGoogle Scholar
  27. Houghton RA, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Dai X, Maskell K, Johnson CA (eds) (2001) Climate change 2001: the scientific basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel of Climate Change. Cambridge University Press, Cambridge, UKGoogle Scholar
  28. Huang C, Kim S, Altstatt A, Townshend JRG, Davis P, Song K, Tucker CJ, Rodas O, Yanosky A, Clay R, Musinsky J (2006) Rapid loss of Paraguay’s Atlantic forest and the status of protected areas—a Landsat assessment. Remote Sens Environ 106:460–466CrossRefGoogle Scholar
  29. Jeanjean H, Achard F (1997) A new approach for tropical forest area monitoring using multiple spatial resolution satellite sensor imagery. Int J Remote Sens 18:2455–2461CrossRefGoogle Scholar
  30. João EM (1998) Causes and consequences of map generalization. Taylor and Francis, London, UKGoogle Scholar
  31. Kennedy RE, Cohen WB, Shroeder TA (2007) Trajectory-based change detection for automated characterization of forest disturbance dynamics. Remote Sens Environ 110:370–386CrossRefGoogle Scholar
  32. Kozak J, Estreguil C, Vogt P (2007) Forest cover and pattern changes in the Carpathians over the last decades. Eur J For Res 126:77–90Google Scholar
  33. Langford WT, Gergel SE, Dietterich TG, Cohen W (2006) Map misclassification can cause large errors in landscape pattern indices: examples from habitat fragmentation. Ecosystems 9:474–488CrossRefGoogle Scholar
  34. Leitão AB, Miller J, Ahern J, McGarigal K (2006) Measuring landscapes. a planner’s handbook. Island Press, WashingtonGoogle Scholar
  35. Li H, Wu J (2004) Use and misuse of landscape indices. Landscape Ecol 19:389–399CrossRefGoogle Scholar
  36. Li H, Wu J (2007) Landscape pattern analysis: key issues and challenges. In: Wu J, Hobbs R (eds) Key topics in landscape ecology. Cambridge University Press, Cambridge, UKGoogle Scholar
  37. Lu D, Mausel P, Brondizio E, Moran E (2004) Change detection techniques. Int J Remote Sens 25:2365–2407CrossRefGoogle Scholar
  38. Lung T, Schaab G (2006) Assessing fragmentation and disturbance of west Kenyan rainforests by means of remotely sensed time series data and landscape metrics. Afr J Ecol 44:491–506CrossRefGoogle Scholar
  39. Mas JF (2005) Change estimates by map comparison: a method to reduce erroneous changes due to positional error. Trans GIS 9:619–629CrossRefGoogle Scholar
  40. McDermid GJ (2005) Remote sensing for large-area, multi-jurisdictional habitat mapping. Dissertation, University of Calgary, Calgary, AlbertaGoogle Scholar
  41. McDermid GJ, Linke J, Pape AD, Laskin DN, McLane AJ, Franklin SE (2008) Object-based approaches to change detection and thematic map update: challenges and limitations. Can J Remote Sens (in press)Google Scholar
  42. McGarigal K, Cushman SE, Neel MC, Ene E (2002) FRAGSTATS: spatial pattern analysis program for categorical maps. Computer software program produced by the authors at the University of Massachusetts, Amherst. Available at the following web site:
  43. Neel M, McGarigal K, Cushmann SA (2004) Behaviour of class-level landscape metrics across gradients of class aggregation and area. Landscape Ecol 19:435–455CrossRefGoogle Scholar
  44. O’Neill RV, Krummel JR, Gardner RH, Sugihara G, Jackson B, DeAngelis DL, Milne BT, Turner MG, Zygmunt B, Christensen SW, Dale VH, Graham RL (1988) Indices of landscape pattern. Landscape Ecol 1:153–162CrossRefGoogle Scholar
  45. Pearson SM, Turner MG, Drake JB (1999) Landscape change and habitat availability in the Southern Appalachian Highlands and Olympic Penninsula. Ecol Appl 9:1288–1304CrossRefGoogle Scholar
  46. Radke RJ, Andra S, Al-Kofahi O, Roysam B (2005) Image change detection algorithms: a systematic survey. IEEE Trans Image Process 14:294–307PubMedCrossRefGoogle Scholar
  47. Remmel TK, Csillag F (2003) When are two landscape pattern indices significantly different? J Geograph Syst 5:331–351CrossRefGoogle Scholar
  48. Roesch FA, Vandeusen PC, Zhu ZL (1995) A comparison of various estimators for updating forest area coverage using AVHRR and forest inventory data. Photogramm Eng Remote Sens 61:307–311Google Scholar
  49. Shao G, Wu J (2008) On the accuracy of landscape pattern analysis using remote sensing data. Landscape Ecol 23:505–511CrossRefGoogle Scholar
  50. Shao G, Liu D, Zhao G (2001) Relationships of image classification accuracy and variation of landscape statistics. Can J Remote Sens 27:33–43Google Scholar
  51. Skole DL, Tucker CJ (1993) Tropical deforestation and habitat fragmentation in the Amazon: satellite data from 1978 to 1988. Science 260:1905–1910PubMedCrossRefGoogle Scholar
  52. Staus NL, Strittholt JR, DellaSala DA, Robinson R (2002) Rate and pattern of forest disturbance in the Lamath-Siskiyo ecoregion, USA between 1972 and 1992. Landscape Ecol 17:455–470CrossRefGoogle Scholar
  53. Stenhouse G, Graham K (2007) Foothills model forest grizzly bear research program: 2006 annual report. Foothills Model Forest, Hinton, AlbertaGoogle Scholar
  54. Tinker DB, Resoir CAC, Beauvois GP, Kipfmueller KF, Fernandes CI, Baker WL (1998) Watershed analysis of forest fragmentation by clearcuts and roads in a Wyoming forest. Landscape Ecol 13:149–165CrossRefGoogle Scholar
  55. Tischendorf L (2001) Can landscape indices predict ecological processes consistently? Landscape Ecol 16:235–254CrossRefGoogle Scholar
  56. Trani MK, Giles RH Jr (1999) An analysis of deforestation: metrics used to describe pattern change. For Ecol Manage 114:459–470CrossRefGoogle Scholar
  57. Turner M, Pearson SM, Bolstad P, Wear DN (2003) Effects of landcover change on spatial pattern of forest communities in the Southern Appalachian Mountains (USA). Landscape Ecol 18:449–464CrossRefGoogle Scholar
  58. Ward K, Kromroy K, Juzwik J (2007) Transformation of the oak forest spatial structure in the Minneapolis/St. Paul metropolitan area, Minnesota, USA over 7 years. Landsc Urban Plan 81:27–33CrossRefGoogle Scholar
  59. Wickham JD, O’Neill RV, Riitters KH, Wade TG, Jones KB (1997) Sensitivity of selected landscape pattern metrics to land-cover misclassification in land-cover composition. Photogramm Eng Remote Sens 63(4):397–402Google Scholar
  60. Wickham JD, Riitters HK, Wade TG, Coulston JW (2007) Temporal change in forest fragmentation at multiple scales. Landscape Ecol 22:481–489CrossRefGoogle Scholar
  61. Woodcock CE, Allen AA, Anderson M, Belward AS, Bindschadler R, Cohen WB, Gao F, Goward SN, Helder D, Helmer E, Nemani R, Oreapoulos L, Schott J, Thenkabail PS, Vermote EF, Vogelmann J, Wulder MA, Wynne R (2008) Free access to Landsat imagery. Science 320:1011PubMedCrossRefGoogle Scholar
  62. Wu J (2004) Effects of changing scale on landscape pattern analysis: scaling relations. Landscape Ecol 19:125–138CrossRefGoogle Scholar
  63. Yuan D, Elvidge C (1998) NALC land-cover change detection pilot study: Washington D.C. area experiments. Remote Sens Environ 66:166–178CrossRefGoogle Scholar
  64. Zhang J, Goodchild MF (2002) Uncertainty in geographical information. Taylor and Francis, London, UKGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Julia Linke
    • 1
    Email author
  • Gregory J. McDermid
    • 1
  • Alysha D. Pape
    • 2
  • Adam J. McLane
    • 1
  • David N. Laskin
    • 1
  • Mryka Hall-Beyer
    • 1
  • Steven E. Franklin
    • 2
  1. 1.Department of GeographyUniversity of CalgaryCalgaryCanada
  2. 2.Department of GeographyUniversity of SaskatoonSaskatoonCanada

Personalised recommendations