Skip to main content

Advertisement

Log in

Response of forest soil properties to urbanization gradients in three metropolitan areas

  • Research Article
  • Published:
Landscape Ecology Aims and scope Submit manuscript

Abstract

We investigated the effects of urban environments on the chemical properties of forest soils in the metropolitan areas of Baltimore, New York, and Budapest. We hypothesized that soils in forest patches in each city will exhibit changes in chemistry corresponding to urbanization gradients, but more strongly with various urban metrics than distance to the urban core. Moreover, differences in parent material and development patterns would differentially affect the soil chemical response in each metropolitan area. Results showed that soil chemical properties varied with measures of urban land use in all three cities, including distance to the urban core, which was an unexpected result. Moreover, the results showed that the spatial extent and amount of change was greater in New York than in Baltimore and Budapest for those elements that showed a relationship to the urbanization gradient (Pb, Cu, and to a lesser extent Ca). The spatial relationship of the soil chemical properties to distance varied from city to city. In New York, concentrations of Pb, Cu, and Ca decreased to approximately background concentrations at 75 km from the urban core. By contrast, concentrations of these elements decreased closer to the urban core in Baltimore and Budapest. Moreover, a threshold was reached at about 75% urban land use above which concentrations of Pb and Cu increased by more than twofold relative to concentrations below this threshold. Results of this study suggest that forest soils are responding to urbanization gradients in all three cities, though characteristics of each city (spatial pattern of development, parent material, and pollution sources) influenced the soil chemical response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Amundson R, Jenny H (1991) The place of humans in the state factor theory of ecosystems and their soils. Soil Sci 151:99–109. doi:10.1097/00010694-199101000-00012

    Article  Google Scholar 

  • Baxter JW, Pickett STA, Dighton H, Carreiro MM (2002) Nitrogen and phosphorus availability in oak forest stands exposed to contrasting anthropogenic impacts. Soil Biol Biochem 34:623–633. doi:10.1016/S0038-0717(01)00224-3

    Article  CAS  Google Scholar 

  • Bytnerowicz A, Fenn ME, Miller PR, Arbaugh MJ (1999) Wet and dry pollutant deposition to the mixed conifer forest. In: Miller PR, McBride JR (eds) Oxidant air pollution impacts in the montane forests of Southern California: a case study of the San Bernardino Mountains. Springer, New York, pp 235–269

    Google Scholar 

  • Carreiro MM, Pouyat RV, Tripler C (in press) Nitrogen and carbon cycling in forests along urban–rural gradients in two cities. In: McDonnell MJ, Breuste J, Hahs A (eds) Ecology of cities and towns: a comparative approach. Springer-Verlag, New York

  • Crowley WP, Rhinhardt J (1979) U.S. Geological Survey map of Baltimore’s west quadrangle, scale 1:24,000. Maryland Geological Survey, Williams and Heintz Map Corporation, Washington, DC

    Google Scholar 

  • De Miguel E, Llamas JF, Chacon E, Berg T, Larssen S, Royset O, Vadset M (1997) Origin and patterns of distribution of trace elements in street dust: unleaded petrol and urban lead. Atmos Environ 31:2733–2740. doi:10.1016/S1352-2310(97)00101-5

    Article  Google Scholar 

  • Enyedi GY (1988) A városnövekedés szakaszai (Periods of urban growth). Akadémiai Kiadó, Buadapest

  • Flores A, Pickett STA, Zipperer WC, Pouyat RV, Pirani R (1998) Adopting a modern ecological view of the metropolitan landscape: the case of a greenspace system for the New York City region. Landsc Urban Plan 39:295–308. doi:10.1016/S0169-2046(97)00084-4

    Article  Google Scholar 

  • Hahs AK, McDonnell MJ (2006) Selecting independent measures to quantify Melbourne’s urban–rural gradient. Landsc Urban Plan 78:435–448. doi:10.1016/j.landurbplan.2005.12.005

    Article  Google Scholar 

  • Hill DE, Sauter EH, Gonick WN (1980) Soils of Connecticut. Conn Agric Exp Stn Bull 787, 36p

  • Inman JC, Parker GR (1978) Decomposition and heavy metal dynamics of forest litter in northwestern Indiana. Environ Pollut 17:34–51

    Google Scholar 

  • Jenny H (1941) Factors of soil formation. McGraw-Hill, New York

    Google Scholar 

  • Johnson AH, Siccama TG, Friedland AJ (1982) Spatial and temporal patterns of lead accumulation in the forest floor in the Northeastern United States. J Environ Qual 11:577–580

    Article  CAS  Google Scholar 

  • Johnson DW, Cole DW (1980) Anion mobility in soils: relevance to nutrient transport from forest ecosystems. Environ Int 3:79–90. doi:10.1016/0160-4120(80)90040-9

    Article  CAS  Google Scholar 

  • Juknys R, Zaltauskaite J, Stakenas V (2007) Ion fluxes with bulk and throughfall deposition along an urban–suburban–rural gradient. Water Air Soil Pollut 78:363–372. doi:10.1007/s11270-006-9204-0

    Article  CAS  Google Scholar 

  • Lee DS, Longhurst JWS (1992) A comparison between wet and bulk deposition at an urban site in the U.K. Water Air Soil Pollut 64:635–648. doi:10.1007/BF00483372

    Article  CAS  Google Scholar 

  • Lovett GM, Traynor MM, Pouyat RV, Carreiro MM, Zhu W, Baxter JW (2000) Atmospheric deposition to oak forests along an urban–rural gradient. Environ Sci Technol 34:4294–4300. doi:10.1021/es001077q

    Article  CAS  Google Scholar 

  • Luck M, Wu J (2002) A gradient analysis of urban landscape pattern: a case study from the Phoenix metropolitan region, Arizona, USA. Landscape Ecol 17:327–339. doi:10.1023/A:1020512723753

    Article  Google Scholar 

  • McDonnell MJ, Pickett STA (1990) The study of ecosystem structure and function along urban–rural gradients: an unexploited opportunity for ecology. Ecology 71:1232–1237. doi:10.2307/1938259

    Article  Google Scholar 

  • McDonnell MJ, Pickett STA, Pouyat RV (1993) The application of the ecological gradient paradigm to the study of urban effects. In: McDonnell MJ, Pickett STA (eds) Humans as components of ecosystems: subtle human effects and the ecology of populated areas. Springer-Verlag, New York, NY, pp 175–189

    Google Scholar 

  • McDonnell MJ, Pickett STA, Pouyat RV, Parmelee RW, Carreiro MM, Groffman PM, Bohlen P, Zipperer WC, Medley K (1997) Ecosystem processes along urban-to-rural gradients. Urban Ecosyst 1:21–36. doi:10.1023/A:1014359024275

    Article  Google Scholar 

  • Medley KE, McDonnell MJ, Pickett STA (1995) Forest-landscape structure along an urban-to-rural gradient. Prof Geogr 47:159–168. doi:10.1111/j.0033-0124.1995.00159.x

    Article  Google Scholar 

  • NRCS (1998) Soil survey of City of Baltimore, Maryland. Natural Resource Conservation Service, Washington, DC

    Google Scholar 

  • Ohtonen R, Markkola AM (1991) Biological activity and amount of FDA mycelium in mor humus of Scots pine stands (Pinus sylvestris L.) in relation to soil properties and degree of pollution. Biogeochemistry 13:1–26. doi:10.1007/BF00002874

    Article  CAS  Google Scholar 

  • Pielou EC (1984) Probing multivariate data with random skewers: a preliminary to direct gradient analysis. Oikos 42:161–165. doi:10.2307/3544788

    Article  Google Scholar 

  • Pouyat RV, McDonnell MJ (1991) Heavy metal accumulation in forest soils along an urban–rural gradient in southeastern New York. Water Air Soil Pollut 57–58:797–807. doi:10.1007/BF00282943

    Article  Google Scholar 

  • Pouyat RV, Effland WR (1999) The investigation and classification of humanly modified soils in the Baltimore Ecosystem Study. Classification, correlation, and management of anthropogenic soils. USDA-NRCS, National Soil Survey Center, California, pp 141–154

    Google Scholar 

  • Pouyat RV, McDonnell MJ, Pickett STA (1995) Soil characteristics of oak stands along an urban–rural land use gradient. J Environ Qual 24:516–526

    CAS  Google Scholar 

  • Pouyat RV, Yesilonis I, Russell-Anelli J (2007) Soil chemical and physical properties that differentiate urban land-use and cover types. J Environ Qual 71:1010–1019

    CAS  Google Scholar 

  • Pouyat RV, Carreiro MM, Groffman PM, Zuckerman M (in press) Investigative approaches to urban biogeochemical cycles: New York metropolitan area and Baltimore as case studies. In McDonnell MJ, Breuste J, Hahs A (eds) Ecology of cities and towns: a comparative approach. Springer-Verlag, New York

  • Richardson JL, Edmonds WJ (1987) Linear regression estimations of Jenny’s relative effectiveness of state factors equation. Soil Sci 144:203–208. doi:10.1097/00010694-198709000-00006

    Article  Google Scholar 

  • Sadler JP, Small EC, Fiszpan H, Telfer MG, Niemelä J (2006) Investigating environmental variation and landscape characteristics of an urban–rural gradient using woodland carabid assemblages. J Biogeogr 33:1126–1138. doi:10.1111/j.1365-2699.2006.01476.x

    Article  Google Scholar 

  • SAS Institute Inc (2006) SAS Statistics User’s Guide, version 9.1. Cary, NC

  • Schuberth CJ (1968) The geology of New York City and environs. Natural History Press, New York

    Google Scholar 

  • Szlavecz K, Placella S, Pouyat RV, Groffman PM, Csuzdi C, Yesilonis ID (2006) Invasive earthworms and N-cycling in remnant forest patches. Appl Soil Ecol 32:54–62. doi:10.1016/j.apsoil.2005.01.006

    Article  Google Scholar 

  • Tanner PA, Fai TW (2000) Small-scale horizontal variations in ionic concentrations of bulk deposition from Hong Kong. Water Air Soil Pollut 122:433–448. doi:10.1023/A:1005245222016

    Article  CAS  Google Scholar 

  • Theobald DM (2004) Placing exurban land-use change in a human modification framework. Front Ecol Environ 2:139–144

    Article  Google Scholar 

  • Van Bohemen HD, Janssen Van De Laak WH (2003) The influence of road infrastructure and traffic on soil, water, and air quality. Environ Manage 31:50–68. doi:10.1007/s00267-002-2802-8

    Article  PubMed  Google Scholar 

  • Whittaker RH (1967) Gradient analysis of vegetation. Biol Rev Camb Philos Soc 49:207–264. doi:10.1111/j.1469-185X.1967.tb01419.x

    Google Scholar 

  • Yesilonis ID, Pouyat RV, Russell-Anelli J (2008) Spatial distribution of metals in soils in Baltimore, Maryland: role of native parent material, proximity to major roads, housing age and screening guidelines. Environ Pollut. doi:10.1016/j.envpol.2008.06.010

  • Zhang CS (2006) Using multivariate analyses and GIS to identify pollutants and their spatial patterns in urban soils in Galway, Ireland. Environ Pollut 142:501–511. doi:10.1016/j.envpol.2005.10.028

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank B. Hanlon for her comments on earlier drafts of this manuscript. Funding support was provided by the US Forest Service’s Northern Global Change Program and Research Work Unit (NE-4952), Syracuse, NY; Baltimore Ecosystem Study grant from the National Science Foundation (DEB 97-14853); and University of Maryland Baltimore County, Center for Urban Environmental Research and Education grant from the Environmental Protection Agency (R-82818204).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard V. Pouyat.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pouyat, R.V., Yesilonis, I.D., Szlavecz, K. et al. Response of forest soil properties to urbanization gradients in three metropolitan areas. Landscape Ecol 23, 1187–1203 (2008). https://doi.org/10.1007/s10980-008-9288-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10980-008-9288-6

Keywords

Navigation