Landscape Ecology

, Volume 23, Issue 8, pp 915–929 | Cite as

Impacts of selective logging on tree diversity across a rainforest landscape: the importance of spatial scale

  • Nicholas J. BerryEmail author
  • Oliver L. Phillips
  • Robert C. Ong
  • Keith C. Hamer
Research Article


Selective logging of tropical forests imposes spatial pattern on the landscape by creating a mosaic of patches affected by different intensities of disturbance. To understand the ecological impacts of selective logging it is therefore necessary to explore how patterns of tree species composition are affected by this patchy disturbance. This study examines the impacts of selective logging on species composition and spatial patterns of vegetation structure and tree diversity in Sabah, Borneo. We compare tree diversity between logged and unlogged forest at three scales: species richness within plots, species turnover among plots, and total species richness and composition of plots combined. Logging had no effect on tree diversity measured at the smallest scale. Logged forest had a greater rate of species turnover with distance, so at a large spatial scale it supported more tree species than the relatively homogeneous unlogged area. Tree species composition also differed significantly between the two types of forest, with more small dipterocarps and large pioneers in logged forest, and more large dipterocarps in unlogged forest. Our results emphasize the importance of sampling at a sufficiently large scale to represent patterns of biodiversity within tropical forest landscapes. Large areas of production forest in SE Asia are threatened with conversion to commercial crops; our findings show that selectively logged forest can retain considerable conservation value.


Alpha-diversity Beta-diversity Borneo Danum Valley Disturbance Gap dynamics Tropical rain forest Vegetation structure 



We thank the staff and scientists at the Danum Valley Field centre, especially Bernados Bala-Ola for help identifying trees in the field; and Alexander Karoulos and Shaidih Samat for assistance with tree surveys. Leopold Madani, Diwol Sundaling and other staff at the Forest Research Centre Sabah assisted with identification of leaf samples and soil analysis. Yayasan Sabah, the Danum Valley Management Committee, the State Secretary, Sabah Chief Minister’s Department, and the Economic Planning Unit of the Prime Minister’s Department, Kuala Lumpur, gave permission to conduct research at Danum Valley. This study is part of the Royal Society Southeast Asia Rain Forest Research Programme (Project No. RS235) and was supported by an Earth and Biosphere Institute studentship to Nicholas J. Berry.


  1. Alder D, Synnott TJ (1992) Permanent sample plot techniques for mixed tropical forest. Tropical Forestry Papers 25. Oxford Forestry Institute, Oxford, UKGoogle Scholar
  2. Anderson MJ (2001) A new method for non-parametric multivariate analysis of variance. Austral Ecol 26:32–46. doi: 10.1046/j.1442-9993.2001.01070.x CrossRefGoogle Scholar
  3. Bischoff W, Newbery DM, Lingenfelder M, Schnaeckel R, Hubert Petol G, Madani L et al (2005) Secondary succession and dipterocarp recruitment in Bornean rain forest after logging. For Ecol Manage 218:174–192. doi: 10.1016/j.foreco.2005.07.009 CrossRefGoogle Scholar
  4. Bray RH, Kurtz LT (1945) Determination of total organic and available forms of phosphorus in soils. Soil Sci 59:39–45. doi: 10.1097/00010694-194501000-00006 CrossRefGoogle Scholar
  5. Brearley FQ, Prajadinata S, Kidd PS, Proctor J, Suriantata (2004) Structure and floristics of an old secondary rain forest in Central Kalimantan, Indonesia, and a comparison with adjacent primary forest. For Ecol Manage 195:385–397. doi: 10.1016/j.foreco.2004.02.048 CrossRefGoogle Scholar
  6. Brown KA, Gurevitch J (2004) Long-term impacts of logging on forest diversity in Madagascar. Proc Natl Acad Sci USA 101:6045–6049. doi: 10.1073/pnas.0401456101 PubMedCrossRefGoogle Scholar
  7. Brown S, Lugo AE (1990) Tropical secondary forests. J Trop Ecol 6:1–32Google Scholar
  8. Cannon CH, Peart DR, Leighton M, Kartawinata K (1994) The structure of lowland rainforest after selective logging in West Kalimantan, Indonesia. For Ecol Manage 67:49–68. doi: 10.1016/0378-1127(94)90007-8 CrossRefGoogle Scholar
  9. Cannon CH, Peart DR, Leighton M (1998) Tree species diversity in commercially logged Bornean rainforest. Science 281:1366–1368. doi: 10.1126/science.281.5381.1366 PubMedCrossRefGoogle Scholar
  10. Chapin FS, Zavaleta ES, Eviner VT, Naylor RL, Vitousek PM, Reynolds HL et al (2000) Consequences of changing biodiversity. Nature 405:234–242. doi: 10.1038/35012241 PubMedCrossRefGoogle Scholar
  11. Clarke KR (1993) Non-parametric multivariate analysis of changes in community structure. Aust J Ecol 18:117–143. doi: 10.1111/j.1442-9993.1993.tb00438.x CrossRefGoogle Scholar
  12. Cleary DFR, Genner MJ, Boyle TJB, Setyawati T, Angraeti CD, Menken SBJ (2005) Associations of bird species richness and community composition with local and landscape-scale environmental factors in Borneo. Landsc Ecol 20:989–1001. doi: 10.1007/s10980-005-7754-y CrossRefGoogle Scholar
  13. Collins NM, Sayer JA, Whitmore TC (1991) The conservation atlas of tropical forests: Asia and the Pacific. Macmillan, LondonGoogle Scholar
  14. Colwell RK (2004) Estimates: statistical estimation of species richness and shared species from samples (, Version 7
  15. Condit R, Hubbell SP, La Frankie JV, Sukumar R, Manokaran N, Foster RB et al (1996) Species-area and species-individual relationships for tropical trees: a comparison of three 50-ha plots. J Ecol 84:549–562. doi: 10.2307/2261477 CrossRefGoogle Scholar
  16. Condit R, Pitman N, Leigh EG, Chave J, Terborgh J, Foster RB et al (2002) Beta-diversity in tropical forest trees. Science 295:666–669PubMedCrossRefGoogle Scholar
  17. Connell JH (1978) Diversity in tropical rain forests and coral reefs: high diversity of trees and corals is maintained only in a nonequilibrium state. Science 199:1302–1310PubMedCrossRefGoogle Scholar
  18. Day PR (1965) Particle fractionation and particle-size analysis. In: Black CA (ed) Methods of soil analysis. American Society of Agronomy, Madison, pp 545–566Google Scholar
  19. Fisher RA, Corbet AS, Williams CB (1943) The relation between the number of species and the number of individuals in a random sample of an animal population. J Anim Ecol 12:42–58. doi: 10.2307/1411 CrossRefGoogle Scholar
  20. Hamer KC, Hill JK (2000) Scale-dependent effects of habitat disturbance on species richness in tropical forests. Conserv Biol 14:1435–1440. doi: 10.1046/j.1523-1739.2000.99417.x CrossRefGoogle Scholar
  21. Hamer KC, Hill JK, Benedick S, Mustaffa N, Sherratt TN, Maryati M et al (2003) Ecology of butterflies in natural and selectively logged forests of northern Borneo: the importance of habitat heterogeneity. J Appl Ecol 40:150–162. doi: 10.1046/j.1365-2664.2003.00783.x CrossRefGoogle Scholar
  22. He F, LaFrankie JV, Song B (2002) Scale dependence of tree abundance and richness in a tropical rain forest, Malaysia. Landsc Ecol 17:559–568. doi: 10.1023/A:1021514104193 CrossRefGoogle Scholar
  23. Hill JK, Hamer KC (2004) Determining impacts of habitat modification on diversity of tropical forest fauna: the importance of spatial scale. J Appl Ecol 41:744–754. doi: 10.1111/j.0021-8901.2004.00926.x CrossRefGoogle Scholar
  24. Hill JK, Hamer KC, Lace LA, Banham WMT (1995) Effects of selective logging on tropical forest butterflies on Buru, Indonesia. J Appl Ecol 32:754–760. doi: 10.2307/2404815 CrossRefGoogle Scholar
  25. Hubbell SP, Foster RB, O’Brien ST, Harms KE, Condit R, Wechsler B et al (1999) Light-gap disturbances, recruitment limitation, and tree diversity in a neotropical forest. Science 283:554–557. doi: 10.1126/science.283.5401.554 PubMedCrossRefGoogle Scholar
  26. Hurlbert SH (1971) The nonconcept of species diversity: a critique and alternative parameters. Ecol Monogr 54:187–211. doi: 10.2307/1942661 CrossRefGoogle Scholar
  27. IUCN (2006) 2006 IUCN red list of threatened species. IUCN, Gland, SwitzerlandGoogle Scholar
  28. Johns AG (1996) Bird population persistence in Sabahan logging concessions. Biol Conserv 75:3–10. doi: 10.1016/0006-3207(95)00044-5 CrossRefGoogle Scholar
  29. Kapos V, Wandelli E, Camargo JL, Ganade G (1997) Edge-related changes in environment and plant responses due to forest fragmentation in central Amazonia. In: Laurence WF, Bierregaard RO Jr (eds) Tropical forest remnants. The University of Chicago Press, ChicagoGoogle Scholar
  30. Koh LP (2007) Impacts of land use change on South-east Asian butterflies: a review. J Appl Ecol 44:703–713. doi: 10.1111/j.1365-2664.2007.01324.x CrossRefGoogle Scholar
  31. Kuusipalo J, Jafarsidik Y, Adjers G, Tuomela K (1996) Population dynamics of tree seedlings in a mixed dipterocarp rainforest before and after logging and crown liberation. For Ecol Manage 81:85–94. doi: 10.1016/0378-1127(95)03654-7 CrossRefGoogle Scholar
  32. Legendre P, Legendre L (1998) Numerical ecology. Elsevier, AmsterdamGoogle Scholar
  33. Lemmon PE (1956) A spherical densiometer for estimating forest overstory density. For Sci 2:314–320Google Scholar
  34. Majalap N, Chu NH (1992) Laboratory manual for chemical analysis. Forest Research Centre, Forestry Department, Sandakan, Sabah, MalaysiaGoogle Scholar
  35. Marsh CW, Greer AG (1992) Forest land-use in Sabah, Malaysia: an introduction to Danum Valley. Philos T R Soc B 335:331–339. doi: 10.1098/rstb.1992.0025 CrossRefGoogle Scholar
  36. Moura Costa P, Karolus A (1992) Innoprise Corporation Sdn Bhd. timber extraction, vols 1970–1991. Ulu Segama Forest Reserve, Innoprise, Sabah, MalaysiaGoogle Scholar
  37. Nekola JC, White PS (1999) The distance decay of similarity in biogeography and ecology. J Biogeogr 26:867–878. doi: 10.1046/j.1365-2699.1999.00305.x CrossRefGoogle Scholar
  38. Newbery DM, Campbell EJF, Lee YF, Ridsdale CE, Still MJ (1992) Primary lowland dipterocarp forest at Danum Valley, Sabah, Malaysia: structure, relative abundance and family composition. Philos T R Soc B 335:341–356. doi: 10.1098/rstb.1992.0026 CrossRefGoogle Scholar
  39. Newman MF, Burgess PF, Whitmore TC (1998) Manuals of dipterocarps for foresters: Borneo Island medium and heavy hardwoods. Royal Botanic Gardens, EdinburghGoogle Scholar
  40. Okuda T, Suzuki M, Adachi N, Quah ES, Hussein NA, Manokaran N (2003) Effect of selective logging on canopy and stand structure and tree species composition in a lowland dipterocarp forest in peninsular Malaysia. For Ecol Manage 175:297–320. doi: 10.1016/S0378-1127(02)00137-8 CrossRefGoogle Scholar
  41. Pearman PB (2002) The scale of community structure: habitat variation and avian guilds in tropical forest understorey. Ecol Monogr 72:19–39Google Scholar
  42. Palmer MW (2005) Distance decay in an old-growth neotropical forest. J Veg Sci 16:161–166CrossRefGoogle Scholar
  43. Phillips OL, Miller J (2002) Global patterns of forest diversity: the dataset of Alwyn H. Gentry. Monographs in Systematic Botany 89. Missouri Botanical Garden, St. Louis, Missouri, USAGoogle Scholar
  44. Phillips OL, Martínez RV, Vargas PN, Monteagudo AL, Zans MC, Sánchez WG et al (2003a) Efficient plot-based floristic assessment of tropical forests. J Trop Ecol 19:629–645. doi: 10.1017/S0266467403006035 CrossRefGoogle Scholar
  45. Phillips OL, Vargas PN, Monteagudo AL, Cruz AP, Zans MEC, Sanchez WG, Yli-Halla M, Rose S (2003b) Habitat association among Amazonian tree species: a landscape-scale approach. J Ecol 91:757–775. doi: 10.1046/j.1365-2745.2003.00815.x CrossRefGoogle Scholar
  46. Phillips OL, Rose S, Monteagudo M, Vargas PN (2006) Resilience of southwestern Amazon forests to anthropogenic edge effects. Conserv Biol 20:1698–1710. doi: 10.1111/j.1523-1739.2006.00523.x PubMedCrossRefGoogle Scholar
  47. Pimm SL, Raven P (2000) Biodiversity: extinction by numbers. Nature 403:843–845. doi: 10.1038/35002708 PubMedCrossRefGoogle Scholar
  48. Plumptre AJ (1996) Changes following sixty years of selective timber harvesting in the Budongo Forest Reserve, Uganda. For Ecol Manage 89:101–113. doi: 10.1016/S0378-1127(96)03854-6 CrossRefGoogle Scholar
  49. Potts MD, Ashton PS, Kaufman LS, Plotkin JB (2002) Habitat patterns in tropical forests: a comparison of 105 plots in northwest Borneo. Ecology 83:2782–2797CrossRefGoogle Scholar
  50. Primack RB, Lee HS (1991) Population-dynamics of pioneer (Macaranga) trees and understorey (Mallotus) trees (Euphorbiaceae) in primary and selectively logged Bornean rain-forests. J Trop Ecol 7:439–457CrossRefGoogle Scholar
  51. Sala OE, Chapin FS, Armesto JJ, Berlow E, Bloomfield J, Dirzo R et al (2000) Biodiversity—global biodiversity scenarios for the year 2100. Science 287:1770–1774. doi: 10.1126/science.287.5459.1770 PubMedCrossRefGoogle Scholar
  52. Sheil D, Sayer JA, O’Brien T (1999) Tree species diversity in logged rainforests. Science 284:1587a. doi: 10.1126/science.284.5420.1587a CrossRefGoogle Scholar
  53. Sist P, Sheil D, Kartawinata K, Priyadi H (2003) Reduced-impact logging in Indonesian Borneo: some results confirming the need for new silvicultural prescriptions. For Ecol Manage 179:415–427. doi: 10.1016/S0378-1127(02)00533-9 CrossRefGoogle Scholar
  54. Slik JWF, van Welzen PC (2004) Macaranga and Mallotus species of Borneo. Nationaal Herbarium Nederland, Leiden University Branch, LeidenGoogle Scholar
  55. Slik JWF, Verburg RW, Keßler PJA (2002) Effects of fire and selective logging on the tree species composition of lowland dipterocarp forest in East Kalimantan, Indonesia. Biodivers Conserv 11:85–98. doi: 10.1023/A:1014036129075 CrossRefGoogle Scholar
  56. Slik JWF, Poulsen AD, Ashton PS, Cannon CH, Eichhorn KAO, Kartawinata K, Lanniari I, Nagamasu H, Nakagawa M, Van Nieuwstadt MGL, Payne J, Purwaningsih, Saridan A, Sidiyasa K, Verburg RW, Webb CO, Wilkie P (2003) A floristic analysis of the lowland dipterocarp forest of Borneo. J Biogeogr 10:1517–1531. doi: 10.1046/j.1365-2699.2003.00967.x CrossRefGoogle Scholar
  57. Solow AR (1993) A simple test for change in community structure. J Anim Ecol 62:191–193. doi: 10.2307/5493 CrossRefGoogle Scholar
  58. Soepadmo E, Saw LG, Chung RCK (2004) Tree flora of Sabah and Sarawak, vol 5. Forest Research Institute Malaysia, Kuala Lumpur, MalaysiaGoogle Scholar
  59. Steinitz O, Heller J, Tsoar A, Rotem D, Kadmon R (2006) Environment, dispersal and patterns of species similarity. J Biogeogr 33:1044–1054. doi: 10.1111/j.1365-2699.2006.01473.x CrossRefGoogle Scholar
  60. Tilman D (1999) Diversity by default. Science 283:495–496. doi: 10.1126/science.283.5401.495 CrossRefGoogle Scholar
  61. Tuomela K, Kuusipalo J, Vesa L, Nuryanto K, Sagala APS, Ådjers G (1996) Growth of dipterocarp seedlings in artificial gaps: an experiment in a logged-over rainforest in South Kalimantan, Indonesia. For Ecol Manage 81:95–100. doi: 10.1016/0378-1127(95)03655-5 CrossRefGoogle Scholar
  62. Turner MG, O’Neill RV, Gardner RH, Milne BT (1989) Effects of changing spatial scale on the analysis of landscape pattern. Landsc Ecol 3:153–162. doi: 10.1007/BF00131534 CrossRefGoogle Scholar
  63. Verburg R, van Eijk-Bos C (2003) Effects of selective logging on tree diversity, composition and plant functional type patterns in a Bornean rain forest. J Veg Sci 14:99–110. doi: 10.1658/1100-9233(2003)014[0099:EOSLOT]2.0.CO;2 CrossRefGoogle Scholar
  64. Walsh RDP, Newbery DM (1999) The ecoclimatology of Danum, Sabah in the context of the world’s rainforest regions, with particular reference to dry periods and their impact. Philos T R Soc B 354:1869–1883. doi: 10.1098/rstb.1999.0528 CrossRefGoogle Scholar
  65. Whitmore TC (1984) Tropical rain forests of the far east. Clarendon Press, OxfordGoogle Scholar
  66. Whittaker RH (1977) Evolution of species diversity in land communities. Evol Biol 10:1–67Google Scholar
  67. Whittaker RJ, Willis KJ, Field R (2001) Scale and species richness: towards a general, hierarchical theory of species diversity. J Biogeogr 28:453–470. doi: 10.1046/j.1365-2699.2001.00563.x CrossRefGoogle Scholar
  68. Wu J (2004) Effects of changing scale on landscape pattern analysis: scaling relations. Landsc Ecol 19:125–138. doi: 10.1023/ CrossRefGoogle Scholar
  69. Wu J, Shen W, Sun W, Tueller PT (2002) Empirical patterns of the effects of changing scale on landscape metrics. Landsc Ecol 17:761–782. doi: 10.1023/A:1022995922992 CrossRefGoogle Scholar
  70. Yeo IK, Johnson R (2000) A new family of power transformations to improve normality or symmetry. Biometrika 87:954–959. doi: 10.1093/biomet/87.4.954 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Nicholas J. Berry
    • 1
    Email author
  • Oliver L. Phillips
    • 2
  • Robert C. Ong
    • 3
  • Keith C. Hamer
    • 4
  1. 1.Faculty of Biological Sciences, Earth and Biosphere InstituteUniversity of LeedsLeedsUK
  2. 2.Earth and Biosphere Institute, School of GeographyUniversity of LeedsLeedsUK
  3. 3.Sabah Forestry Department Forest Research CentreSandakanMalaysia
  4. 4.Institute of Integrative and Comparative BiologyUniversity of LeedsLeedsUK

Personalised recommendations