Landscape Ecology

, Volume 24, Issue 8, pp 1091–1103 | Cite as

Experimental evidence of the effects of a changed matrix on conserving biodiversity within patches of native forest in an industrial plantation landscape

  • David B. Lindenmayer
  • Jeff T. Wood
  • Ross B. Cunningham
  • Mason Crane
  • Christopher Macgregor
  • Damian Michael
  • Rebecca Montague-Drake
Research Article


We implemented a replicated before-after-control-impact (BACI) experiment to quantify vertebrate response in native forest patches to a major change in the surrounding exotic Radiata Pine (Pinus radiata) plantation. We contrasted vertebrate occupancy of patches of native eucalypt forest where the surrounding stands of exotic Radiata Pine (Pinus radiata) were clearfelled (termed “treatment patches”) with matched “control patches” where surrounding pine stands remained unlogged. Different species of arboreal marsupials varied in their response to our experimental treatments. The Common Ringtail Possum was unaffected by cutting of the surrounding pine stands, whereas all sightings of the Mountain Brushtail Possum were in control patches. For birds, species richness was significantly reduced by 4–9 species in treatment patches. Birds with cup and dome nests were those negatively affected by the cutting of the surrounding pine stands. They may be susceptible to altered microclimatic conditions or increasing levels of nest predation when the surrounding pine matrix is clearfelled. Our study emphasized how the biota inhabiting retained patches of native forest within plantation landscapes can be changed when stands of surrounding Radiata Pine are clearfelled. In the case of birds, more species will be maintained within eucalypt patches if logging is scheduled so that not all the surrounding pine plantation is clearfelled at once.


Landscape context Landscape experiment Birds Arboreal marsupials South-eastern Australia Ecologically sustainable management of plantations 



This study was supported through grants from the Joint Venture Agroforestry Program, Land and Water Australia and the Kendall Foundation. We thank B. D. Lindenmayer and volunteers from the Canberra Ornithologists Group for assistance with counts of birds. Mr. S. Cowling from Birds Australia assisted with access to and the collation of bird life history information. Collaboration with Dr. J. Fischer and Dr. D. Tubelius on previous projects in the Tumut region is most gratefully acknowledged. Comments by Dr. A. Felton, two anonymous referees and Dr. Laura Musacchio greatly improved earlier versions of the manuscript. Mr. J. Stein kindly assisted in the drawing of Fig. 1.


  1. Askins RA, Philbrick MJ, Sugeno DS (1987) Relationships between the regional abundance of forest and the composition of bird communities. Biol Conserv 39:129–152. doi: 10.1016/0006-3207(87)90030-9 CrossRefGoogle Scholar
  2. Ås S (1999) Invasion of matrix species in small habitat patches. Conserv Ecol [online] 3:1. Accessed 4 December 2007
  3. Bayne EM, Hobson KA (1997) Comparing the effects of landscape fragmentation by forestry and agriculture on predation of artificial nests. Conserv Biol 11:1418–1429. doi: 10.1046/j.1523-1739.1997.96135.x CrossRefGoogle Scholar
  4. Bélisle M, Desrochers A (2002) Gap-crossing decisions by forest birds: an empirical basis for parameterizing spatially-explicit, individual-based models. Landsc Ecol 17:219–231. doi: 10.1023/A:1020260326889 CrossRefGoogle Scholar
  5. Bender DJ, Fahrig L (2005) Matrix structure obscures the relationship between interpatch movement and patch size isolation. Ecology 86:1023–1033. doi: 10.1890/03-0769 CrossRefGoogle Scholar
  6. Bunnell F (1999) What habitat is an island? In: Rochelle J, Lehmann LA, Wisniewski J (eds) Forest wildlife and fragmentation. management implications. Brill, Leiden, pp 1–31Google Scholar
  7. Chen J, Franklin JF, Spies TA (1992) Vegetation responses to edge environments in old-growth Douglas-fir forests. Ecol Appl 2:387–396. doi: 10.2307/1941873 CrossRefGoogle Scholar
  8. Crow TR, Gustafson EG (1997) Ecosystem management: managing natural resources in space and time. In: Kohm KA, Franklin JF (eds) Creating a forestry for the 21st century. Island Press, Covelo, pp 215–228Google Scholar
  9. Cubbage FW, Dvorak WS, Abt RC et al (1996) World timber supply and prospects: models, projections, plantations and implications. Central America and Mexico Coniferous (CAMCORE) Annual Meeting, Bali, IndonesiaGoogle Scholar
  10. Cunningham RB, Lindenmayer DB, Nix HA et al (1999) Quantifying observer heterogeneity in bird counts. Aust J Ecol 24:270–277. doi: 10.1046/j.1442-9993.1999.00971.x CrossRefGoogle Scholar
  11. Cunningham RB, Lindenmayer DB, Lindenmayer BD (2004) Sound recording of bird vocalisations in forests. I. Relationships between bird vocalisations and point interval counts of bird numbers—a case study in statistical modeling. Wildl Res 31:195–207. doi: 10.1071/WR02062 CrossRefGoogle Scholar
  12. Daily GC, Ceballos G, Pacheco J et al (2003) Countryside biogeography of neotropical mammals: conservation opportunities in agricultural landscapes of Costa Rica. Conserv Biol 17:1814–1826. doi: 10.1111/j.1523-1739.2003.00298.x CrossRefGoogle Scholar
  13. Darveau M, Beauchesne P, Belanger L et al (1995) Riparian forest strips as habitat for breeding birds in boreal forest. J Wildl Manage 59:67–78. doi: 10.2307/3809117 CrossRefGoogle Scholar
  14. Davies KF, Melbourne BA, Margules CR (2001) Effects of within- and between-patch processes on community dynamics in a fragmentation experiment. Ecology 82:1830–1846CrossRefGoogle Scholar
  15. Debinski DM, Holt RD (2000) A survey and overview of habitat fragmentation experiments. Conserv Biol 14:342–355. doi: 10.1046/j.1523-1739.2000.98081.x CrossRefGoogle Scholar
  16. Diamond J (1986) Overview: laboratory experiments, field experiments and natural experiments. In: Diamond J, Case TJ (eds) Community ecology. Harper and Row, New York, pp 3–22Google Scholar
  17. Dyck W (2000) Nature conservation in New Zealand plantation forestry. In: Craig J, Mitchell N, Saunders D (eds) Nature conservation 5: nature conservation in production environments: managing the matrix. Surrey Beatty and Sons, Chipping Norton, pp 35–43Google Scholar
  18. Estades CF, Temple SA (1999) Deciduous-forest bird communities in a fragmented landscape dominated by exotic pine plantations. Ecol Appl 9:573–585. doi: 10.1890/1051-0761(1999)009[0573:DFBCIA]2.0.CO;2 CrossRefGoogle Scholar
  19. Fahrig L (2003) Effects of habitat fragmentation on biodiversity. Annu Rev Ecol Evol Syst 34:487–515. doi: 10.1146/annurev.ecolsys.34.011802.132419 CrossRefGoogle Scholar
  20. Field SA, Tyre AJ, Possingham HP (2002) Estimating bird species richness: how should repeat surveys be organized in time? Austral Ecol 27:624–629. doi: 10.1046/j.1442-9993.2002.01223.x CrossRefGoogle Scholar
  21. Fischer J, Lindenmayer DB, Fazey I (2004) Appreciating ecological complexity: habitat contours as a conceptual model. Conserv Biol 18:1245–1253. doi: 10.1111/j.1523-1739.2004.00263.x CrossRefGoogle Scholar
  22. Food and Agriculture Organisation of the United Nations (2007) State of the world’s forests. Food and Agriculture Organisation of the United Nations, RomeGoogle Scholar
  23. Forman RTT (1995) Land mosaics: the ecology of landscapes and regions. Cambridge University Press, New YorkGoogle Scholar
  24. Franklin JF (2003) Challenges to temperate forest stewardship—focusing on the future. In: Lindenmayer DB, Franklin JF (eds) Towards forest sustainability. Island Press, Washington, pp 1–13Google Scholar
  25. Friend GR (1982) Mammal populations in exotic pine plantations and indigenous forests in Gippsland, Victoria. Aust For 45:3–18Google Scholar
  26. Gascon C, Lovejoy TE, Bierregaard ROJ et al (1999) Matrix habitat and species richness in tropical forest remnants. Biol Conserv 91:223–229. doi: 10.1016/S0006-3207(99)00080-4 CrossRefGoogle Scholar
  27. Greenacre MJ (2007) Correspondence analysis in practice, 2nd edn. Chapman & Hall/CRC, LondonGoogle Scholar
  28. Grez AA, Simonetti JA, Bustamente RO (eds) (2006) Biodiversidad en ambientes fragmentados de Chile: patrones y procesos a differentes escales. Editorial Universitatia, SantiagoGoogle Scholar
  29. Hansen AJ, Urban DL (1992) Avian response to landscape pattern: the role of species’ life histories. Landsc Ecol 7:163–180. doi: 10.1007/BF00133308 CrossRefGoogle Scholar
  30. Hanski I (1999) Metapopulation ecology. Oxford University Press, OxfordGoogle Scholar
  31. Harper KA, Macdonald SE, Burton PJ et al (2005) Edge influence on forest structure and composition in fragmented landscapes. Conserv Biol 19:768–782. doi: 10.1111/j.1523-1739.2005.00045.x CrossRefGoogle Scholar
  32. Haskell DG, Evans JP, Pelkey NW (2006) Depauperate avifauna in plantations compared to forests and exurban areas. PLoS ONE 1:e63. doi: 10.1371/journal.pone.0000063 PubMedCrossRefGoogle Scholar
  33. Haynes KJ, Dillemuth FP, Anderson BJ et al (2006) Landscape context outweighs local habitat quality in its effects on herbivore dispersal and distribution. Oecologia 151:431–441. doi: 10.1007/s00442-006-0600-3 PubMedCrossRefGoogle Scholar
  34. Jackson RB, Jobbagy EG, Avissar R et al (2005) Trading water for carbon with biological sequestration. Science 310:1944–1947. doi: 10.1126/science.1119282 PubMedCrossRefGoogle Scholar
  35. Laurance WF (1991) Ecological correlates of extinction proneness in Australian tropical rain-forest mammals. Conserv Biol 5:79–89. doi: 10.1111/j.1523-1739.1991.tb00390.x CrossRefGoogle Scholar
  36. Lindenmayer DB, Franklin JF (2002) Conserving forest biodiversity: a comprehensive multiscaled approach. Island Press, WashingtonGoogle Scholar
  37. Lindenmayer DB, Hobbs RJ (2004) Biodiversity conservation in plantation forests—a review with special reference to Australia. Biol Conserv 119:151–168. doi: 10.1016/j.biocon.2003.10.028 CrossRefGoogle Scholar
  38. Lindenmayer DB, Fischer J (2006) Habitat fragmentation and landscape change. Island Press, WashingtonGoogle Scholar
  39. Lindenmayer DB, Cunningham RB, Tanton MT et al (1991) Aspects of the use of den trees by arboreal and scansorial marsupials inhabiting montane ash forests in Victoria. Aust J Zool 39:57–65. doi: 10.1071/ZO9910057 CrossRefGoogle Scholar
  40. Lindenmayer DB, Cunningham RB, Pope ML et al (1999a) The response of arboreal marsupials to landscape context: a large-scale fragmentation study. Ecol Appl 9:594–611. doi: 10.1890/1051-0761(1999)009[0594:TROAMT]2.0.CO;2 CrossRefGoogle Scholar
  41. Lindenmayer DB, Pope ML, Cunningham RB (1999b) Roads and nest predation: an experimental study in a modified forest ecosystem. Emu 99:148–152. doi: 10.1071/MU99017C CrossRefGoogle Scholar
  42. Lindenmayer DB, Cunningham RB, Tribolet CR et al (2001) The Nanangroe landscape experiment—baseline data for mammals, reptiles and nocturnal birds. Biol Conserv 101:157–169. doi: 10.1016/S0006-3207(01)00061-1 CrossRefGoogle Scholar
  43. Lindenmayer DB, Cunningham RB, Donnelly CF et al (2002) The distribution of birds in a novel landscape context. Ecol Monogr 72:1–18Google Scholar
  44. Lindenmayer DB, Cunningham RB, Lindenmayer BD (2004) Sound recording of bird vocalisations in forests. II. Longitudinal profiles in vocal activity. Wildl Res 31:209–217. doi: 10.1071/WR02063 CrossRefGoogle Scholar
  45. Lindenmayer DB, Cunningham RB, MacGregor C et al (2008) Temporal changes in vertebrates during landscape transformation: findings from a large-scale “natural experiment”. Ecol Monogr (in press)Google Scholar
  46. Mac Nally R (1994) Habitat-specific guild structure of forest birds in south-eastern Australia: a regional scale perspective. J Anim Ecol 63:988–1001. doi: 10.2307/5275 CrossRefGoogle Scholar
  47. Martin TE, Karr JR (1986) Patch utilisation by migrating birds: resource orientated? Ornis Scand 17:165–174. doi: 10.2307/3676865 CrossRefGoogle Scholar
  48. Martínez-Sánchez JJ, Ferrandis P, de las Heras J et al (1999) Effect of burnt wood removal on the natural regeneration of Pinus halepensis after fire in a pine forest in Tus Valley (SE Spain). For Ecol Manage 123:1–10. doi: 10.1016/S0378-1127(99)00012-2 CrossRefGoogle Scholar
  49. McCulloch CE, Searle SR (2001) Generalized, linear and mixed models. Wiley, New YorkGoogle Scholar
  50. McGarigal K, Cushman SA (2002) Comparative evaluation of experimental approaches to the study of fragmentation studies. Ecol Appl 12:335–345. doi: 10.1890/1051-0761(2002)012[0335:CEOEAT]2.0.CO;2 CrossRefGoogle Scholar
  51. McKinney ML (1997) Extinction vulnerability and selectivity: combining ecological and paleantological views. Annu Rev Ecol Syst 28:495–516. doi: 10.1146/annurev.ecolsys.28.1.495 CrossRefGoogle Scholar
  52. Nix HA, Switzer MA (1991) Rainforest animals. Atlas of vertebrates endemic to Australia’s wet tropics. Kowari 1:1–112Google Scholar
  53. O’Grady JJ, Reed DH, Brook BW et al (2004) What are the best correlates of predicted extinction risk? Biol Conserv 118:513–520. doi: 10.1016/j.biocon.2003.10.002 CrossRefGoogle Scholar
  54. Parris K, Lindenmayer DB (2004) Has replacement of Eucalyptus forests with plantations of Radiata Pine reduced and fragmented habitat for frogs? Acta Oecol 25:93–101. doi: 10.1016/j.actao.2003.11.006 CrossRefGoogle Scholar
  55. Parry BB (1997) Abiotic edge effects in wet sclerophyll forest in the central highlands of Victoria. MSc thesis, School of Botany, University of Melbourne, MelbourneGoogle Scholar
  56. Peterken GF (1996) Natural woodland: ecology and conservation in northern temperate regions. Cambridge University Press, CambridgeGoogle Scholar
  57. Pyke GH, Recher HF (1983) Censusing Australian birds: a summary of procedures and a scheme for standardisation of data presentation and storage. In: Davies SJ (ed) Methods of censusing birds in Australia. Proceedings of a symposium organised by the Zoology section of the ANZAAS and the Western Australian Group of the Royal Australasian Ornithologists Union. Department of Conservation and Environment, Perth, pp 55–63Google Scholar
  58. Renjifo LM (2001) Effect of natural and anthropogenic landscape matrices on the abundance of sub-Andean bird species. Ecol Appl 11:14–31. doi: 10.1890/1051-0761(2001)011[0014:EONAAL]2.0.CO;2 CrossRefGoogle Scholar
  59. Revilla E, Wiegand TFP, Ferreras P et al (2004) Effects of matrix heterogeneity on animal dispersal: from individual behaviour to meta-population-level parameters. Am Nat 164:130–153. doi: 10.1086/424767 CrossRefGoogle Scholar
  60. Ricketts TH (2001) The matrix matters: effective isolation in fragmented landscapes. Am Nat 158:87–99. doi: 10.1086/320863 PubMedCrossRefGoogle Scholar
  61. Ries L, Fletcher RJ, Battin J, Sisk TD (2004) Ecological responses to habitat edges: mechanisms, models, and variability explained. Annu Rev Ecol Evol Syst 35:491–522. doi: 10.1146/annurev.ecolsys.35.112202.130148 CrossRefGoogle Scholar
  62. Salt D, Lindenmayer DB, Hobbs RJ (2004) Trees and biodiversity: a guide for Australian farm forestry. Rural Industries Research and Development Corporation, CanberraGoogle Scholar
  63. Smith JM (1982) Ecological comparisons between pine plantations and native forests, Clouds Creek, New South Wales. Research series in applied geography. University of New England, ArmidaleGoogle Scholar
  64. Spellerberg IF, Sawyer J (1997) Biological diversity in plantation forests. In: Hale P, Lamb D (eds) Conservation outside nature reserves. Centre for Conservation Biology, University of Queensland, Brisbane, pp 517–522Google Scholar
  65. Tocher MD, Gascon C, Zimmerman BL (1997) Fragmentation effects on a central American frog community: a ten-year study. In: Laurance WF, Bierregaard RO (eds) Tropical forest remnants. Ecology management and conservation of fragmented communities. University of Chicago Press, Chicago, pp 124–137Google Scholar
  66. Tubelius DP, Lindenmayer DB, Saunders DA et al (2004) Landscape supplementation provided by an exotic matrix: implications for bird conservation and forest management in a softwood plantation system in south-eastern Australia. Oikos 107:634–644. doi: 10.1111/j.0030-1299.2004.13420.x CrossRefGoogle Scholar
  67. van Dorp D, Opdam PF (1987) Effects of patch size, isolation and regional abundance of forest bird communities. Landsc Ecol 1:59–73. doi: 10.1007/BF02275266 CrossRefGoogle Scholar
  68. van Jaarsveld A, Ferguson JH et al (1998) The Groenvaly grassland fragmentation experiment: design and initiation. Agric Ecosyst Environ 68:139–150. doi: 10.1016/S0167-8809(97)00156-4 CrossRefGoogle Scholar
  69. Viveiros de Castro EB, Fernandez FAS (2004) Determinants of differential extinction probabilities of small mammals in Atlantic forest fragments. Biol Conserv 119:73–80. doi: 10.1016/j.biocon.2003.10.023 CrossRefGoogle Scholar
  70. Watson JEM, Whittaker RJ, Freudenberger D (2005) Bird community responses to habitat fragmentation: how consistent are they across landscapes? J Biogeogr 32:1353–1370Google Scholar
  71. Wethered R, Lawes MJ (2003) Matrix effects on bird assemblages in fragmented Afromontane forests in South Africa. Biol Conserv 114:327–340. doi: 10.1016/S0006-3207(03)00052-1 CrossRefGoogle Scholar
  72. Yamaura Y, Katoh K, Takahashi T (2006) Reversing habitat loss: deciduous habitat fragmentation matters to birds in a larch plantation matrix. Ecography 29:827–834. doi: 10.1111/j.2006.0906-7590.04831.x CrossRefGoogle Scholar
  73. Zanuncio JC, Mezzomo JA, Guedes RN et al (1998) Influence of strips of native vegetation on Lepidoptera associated with Eucalyptus cloezianna in Brazil. For Ecol Manage 108:85–90. doi: 10.1016/S0378-1127(98)00215-1 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • David B. Lindenmayer
    • 1
  • Jeff T. Wood
    • 1
    • 2
  • Ross B. Cunningham
    • 1
  • Mason Crane
    • 1
  • Christopher Macgregor
    • 1
  • Damian Michael
    • 1
  • Rebecca Montague-Drake
    • 1
  1. 1.Fenner School of Environment and Society, WK Hancock Building West [43]The Australian National UniversityCanberraAustralia
  2. 2.Statistical Consulting UnitThe Australian National UniversityCanberraAustralia

Personalised recommendations