Abstract
The effect of environmental heterogeneity on spatial spread of invasive species has received little attention in the literature. Altering landscape heterogeneity may be a suitable strategy to control invaders in man-made landscapes. We use a population-based, spatially realistic matrix model to explore mechanisms underlying the observed invasion patterns of an alien tree species, Prunus serotina Ehrh., in a heterogeneous managed forest. By altering several parameters in the simulation, we test for various hypotheses regarding the role of several mechanisms on invasion dynamics, including spatial heterogeneity, seed dispersers, site of first introduction, large-scale natural disturbances, and forest management. We observe that landscape heterogeneity makes the invasion highly directional resulting from two mechanisms: (1) irregular jumps, which occur rarely via long-distance dispersers and create new founder populations in distant suitable areas, and (2) regular, continuous diffusion toward adjacent cells via short- and mid-distance vectors. At the landscape scale, spatial heterogeneity increases the invasion speed but decreases the final invasion extent. Hence, natural disturbances (such as severe storms) appear to facilitate invasion spread, while forest management can have contrasting effects such as decreasing invasibility at the stand scale by increasing the proportion of light interception at the canopy level. The site of initial introduction influences the invasion process but without altering the final outcome. Our model represents the real landscape and incorporates the range of dispersal modes, making it a powerful tool to explore the interactions between environmental heterogeneity and invasion dynamics, as well as for managing plant invaders.
This is a preview of subscription content, access via your institution.







References
Buckley YM, Briese DT, Rees M (2003) Demography and management of the invasive plant species Hypericum perforatum. II. Construction and use of an individual-based model to predict population dynamics and the effects of management strategies. J Appl Ecol 40:494–507. doi:10.1046/j.1365-2664.2003.00822.x
Cannas SA, Marco DE, Paez SA (2003) Modelling biological invasions: species traits, species interactions, and habitat heterogeneity. Math Biosci 183:93–110. doi:10.1016/S0025-5564(02)00213-4
Cannas SA, Marco DE, Montemurro MA (2006) Long range dispersal and spatial pattern formation in biological invasions. Math Biosci 203:155–170. doi:10.1016/j.mbs.2006.06.005
Chabrerie O, Hoeblich H, Decocq G (2007a) Déterminisme et conséquences écologiques de la dynamique invasive du cerisier tardif (Prunus serotina Ehrh.) sur les communautés végétales de la forêt de Compiègne. Acta Bot Gallica 154:383–394
Chabrerie O, Roulier F, Hoeblich H, Sebert E, Closset-Kopp D, Leblanc I et al (2007b) Defining patch mosaic functional types to predict invasion patterns in a forest landscape. Ecol Appl 17:464–481. doi:10.1890/06-0614
Chabrerie O, Verheyen K, Saguez R, Decocq G (2008) Disentangling relationships between habitat conditions, disturbance history, plant diversity and American Black cherry (Prunus serotina Ehrh.) invasion in a European temperate forest. Divers Distrib 14:204–212. doi:10.1111/j.1472-4642.2007.00453.x
Clark JS, Fastie C, Hurtt G, Jackson ST, Johnson C, King GA et al (1998) Reid’s paradox of rapid plant migration. Bioscience 48:13–24. doi:10.2307/1313224
Closset-Kopp D, Chabrerie O, Valentin B, Delachapelle H, Decocq G (2007) When Oskar meets Alice: does a lack of trade-off in r/K-strategies make Prunus serotina a successful invader of European forests? For Ecol Manage 247:120–130. doi:10.1016/j.foreco.2007.04.023
Davies KF, Chesson P, Harrison S, Inouye BD, Melbourne BA, Rice KJ (2005) Spatial heterogeneity explains the scale dependence of the native-exotic diversity relationship. Ecology 86:1602–1610. doi:10.1890/04-1196
Davis MA, Grime JP, Thompson K (2000) Fluctuating resources in plant communities: a general theory of invasibility. J Ecol 88:528–536. doi:10.1046/j.1365-2745.2000.00473.x
Deckers B, Verheyen K, Hermy M, Muys B (2005) Effects of landscape structure on the invasive spread of black cherry Prunus serotina in an agricultural landscape in Flanders, Belgium. Ecography 28:99–109. doi:10.1111/j.0906-7590.2005.04054.x
Drake JM, Lodge DM (2006) Allee effects, propagule pressure and the probability of establishment: risk analysis for biological invasions. Biol Invasions 8:365–375. doi:10.1007/s10530-004-8122-6
Fahrig L, Merriam G (1994) Conservation of fragmented populations. Conserv Biol 8:50–59. doi:10.1046/j.1523-1739.1994.08010050.x
Franklin JF, Forman RTT (1987) Creating landscape patterns by forest cutting: ecological consequences and principles. Landsc Ecol 1:5–18. doi:10.1007/BF02275261
Garnier A, Lecomte J (2006) Using a spatial and stage-structured invasion model to assess the spread of feral populations of transgenic oilseed rape. Ecol Modell 194:141–149. doi:10.1016/j.ecolmodel.2005.10.009
Hanski I (1999) Metapopulation ecology. Oxford University Press, Oxford
Hastings A, Cuddington K, Davies KF, Dugaw CJ, Elmendorf S, Freestone A et al (2005) The spatial spread of invasions: new developments in theory and evidence. Ecol Lett 8:91–101. doi:10.1111/j.1461-0248.2004.00687.x
Higgins SI, Richardson DM (1996) A review of models of alien plant spread. Ecol Modell 87:249–265. doi:10.1016/0304-3800(95)00022-4
Higgins SI, Richardson DM (1998) Pine invasions in the southern hemisphere: modelling interactions between organism, environment and disturbance. Plant Ecol 135:79–93. doi:10.1023/A:1009760512895
Higgins SI, Richardson DM, Cowling RM (2000) Using a dynamic landscape model for planning the management of alien plant invasions. Ecol Appl 10:1833–1848. doi:10.1890/1051-0761(2000)010[1833:UADLMF]2.0.CO;2
Johnstone IM (1986) Plant invasion windows: a time based classification of invasion potential. Biol Rev Camb Philos Soc 61:369–394. doi:10.1111/j.1469-185X.1986.tb00659.x
Kot M, Lewis M, van den Driessche P (1996) Dispersal data and the spread of invading organisms. Ecology 77:2027–2042. doi:10.2307/2265698
Lockwood JL, Cassey P, Blackburn T (2005) The role of propagule pressure in explaining species invasion. Trends Ecol Evol 20:223–228. doi:10.1016/j.tree.2005.02.004
Lodge DM (1993) Biological invasions: lessons for ecology. Trends Ecol Evol 8:133–137. doi:10.1016/0169-5347(93)90025-K
Melbourne BA, Cornell HV, Davies KF, Dugaw CJ, Elmendorf S, Freestone AL et al (2007) Invasion in a heterogeneous world: resistance, coexistence or hostile takeover? Ecol Lett 10:77–94. doi:10.1111/j.1461-0248.2006.00987.x
Nathan R, Sapir N, Trakhtenbrot A, Katul GG, Bohrer G, Otte M et al (2005) Long-distance biological transport processes through the air: can nature’s complexity be unfolded in silico?. Divers Distrib 11:131–137. doi:10.1111/j.1366-9516.2005.00146.x
Neubert GN, Kot M, Lewis MA (2000) Invasion speeds in fluctuating environments. Proc R Soc Lond B Biol Sci 267:1603–1610. doi:10.1098/rspb.2000.1185
Pairon M, Jonard M, Jacquemart AL (2006) Modeling seed dispersal of black cherry (Prunus serotina Ehrh.) an invasive tree: how microsatellites may help? Can J Res 36:1385–1394. doi:10.1139/X06-018
Pimentel DL, Lach L, Zuniga R, Morisson D (2000) Environmental and economic costs of nonindigenous species in the United States. Bioscience 50:53–65. doi:10.1641/0006-3568(2000)050[0053:EAECON]2.3.CO;2
Pulliam HR, Dunning JB (1995) Spatially explicit population models. Ecol Appl 5:3–11. doi:10.2307/1942044
Richardson DM, Pyšek P (2006) Plant invasions—merging the concepts of species invasiveness and community invasibility. Prog Phys Geogr 30:409–431. doi:10.1191/0309133306pp490pr
Sebert-Cuvillier E, Paccaut F, Chabrerie O, Endels P, Goubet O, Decocq G (2007) Local population dynamics of an invasive tree species with a complex life-history cycle: a stochastic matrix model. Ecol Modell 201:127–143. doi:10.1016/j.ecolmodel.2006.09.005
Shigesada N, Kawasaki K (1997) Biological invasions: theory and practice. Oxford University Press, Oxford
Snyder RE, Chesson P (2003) Local dispersal can facilitate coexistence in the presence of permanent spatial heterogeneity. Ecol Lett 6:301–309. doi:10.1046/j.1461-0248.2003.00434.x
Söndgerath D, Schröder B (2002) Population dynamics and habitat connectivity affecting the spatial spread of populations. A simulation study. Landsc Ecol 17:57–70. doi:10.1023/A:1015237002145
Starfinger U (1991) Population biology of an invading tree species-Prunus serotina. In: Seitz A, Loeschcke V (eds) Species conservation: a population-biological approach. Birkhaüser Verlag, Basel, pp 171–184
Starfinger U (1997) Introduction and naturalization of Prunus serotina in Central Europe. In: Brock JH, Wade M, Pyšek P, Green D (eds) Plant invasions: studies from North America and Europe. Backhuys Publishers, Leiden, pp 161–171
Suarez AV, Holway DA, Case TJ (2001) Patterns of spread in biological invasions dominated by long-distance jump dispersal: insights from Argentine ants. Proc Nat Acad Sci USA 98:1095–1100. doi:10.1073/pnas.98.3.1095
Tischendorf L, Fahrig L (2000) On the usage and measurement of landscape connectivity. Oikos 90:7–19. doi:10.1034/j.1600-0706.2000.900102.x
Trakhtenbrot A, Nathan R, Perry G, Richardson DM (2005) The importance of long-distance dispersal in biodiversity conservation. Divers Distrib 11:173–181. doi:10.1111/j.1366-9516.2005.00156.x
Verheyen K, Vanhellemont M, Stock T, Hermy M (2007) Predicting patterns of invasion by black cherry (Prunus serotina Ehrh.) in Flanders (Belgium) and its impact on the forest understorey community. Divers Distrib 13:487–497. doi:10.1111/j.1472-4642.2007.00334.x
Westerberg L, Wennergren U (2003) Predicting the spatial distribution of a population in a heterogeneous landscape. Ecol Modell 166:53–65. doi:10.1016/S0304-3800(03)00118-2
Westerberg L, Östman Ö, Wennergren U (2005) Movement effects on equilibrium distributions of habitat generalists in heterogeneous landscapes. Ecol Modell 188:432–447. doi:10.1016/j.ecolmodel.2005.02.004
Williamson M (1999) Invasions. Ecography 22:5–12. doi:10.1111/j.1600-0587.1999.tb00449.x
Wilson JRU, Richardson DM, Rouget M, Proches S, Amis MA, Henderson L et al (2007) Residence time and potential range: crucial considerations in modelling plant invasions. Divers Distrib 13:11–22. doi:10.1111/j.1366-9516.2006.00302.x
With KA (2002) The landscape ecology of invasive spread. Conserv Biol 151:1192–1203. doi:10.1046/j.1523-1739.2002.01064.x
Acknowledgements
We thank Marie Pairon (Université catholique de Louvain) for her help in parameterizing the model and Jérôme Jaminon (Office National des Forêts) for facilities during field data collection. We also thank Kirk Moloney, David Richardson and the three anonymous referees for their helpful comments on the initial manuscript, and Sharon Stanton for having reviewed the English writing. This study was financially supported by the French ‘Ministère de l’Ecologie et du Développement Durable’ (INVABIO II program, CR No. 09-D/2003).
Author information
Authors and Affiliations
Corresponding author
Electronic Supplementary Material
Rights and permissions
About this article
Cite this article
Sebert-Cuvillier, E., Simon-Goyheneche, V., Paccaut, F. et al. Spatial spread of an alien tree species in a heterogeneous forest landscape: a spatially realistic simulation model. Landscape Ecol 23, 787–801 (2008). https://doi.org/10.1007/s10980-008-9237-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10980-008-9237-4
Keywords
- Compiègne forest (France)
- Connectivity
- Disturbance
- Environmental heterogeneity
- Forest management
- Invasibility
- Long-distance dispersal
- Prunus serotina
- Population-based matrix model
- Resource availability