Skip to main content

Advertisement

Log in

Patterns of abundance and movement in relation to landscape structure: a study of a common scarab (Canthon cyanellus cyanellus) in Southern Mexico

  • Research Article
  • Published:
Landscape Ecology Aims and scope Submit manuscript

Abstract

Few relevant data are available to analyze how landscape features affect the abundance and movement patterns of tropical insects. We used mark-release-recapture techniques to study the effects of landscape structure and composition on habitat preferences and movements of Canthon cyanellus cyanellus individuals, within a complex tropical deciduous forest landscape in South Mexico during 2004 and 2005. In total, 2,460 individuals of C. c. cyanellus were captured, including 1,225 females and 1,235 males, out of which 124 individuals (65 females and 59 males) were recaptured once, and 9 individuals (seven females and two males) were recaptured twice. The abundance of individuals was equally high in large forest fragments, small forest fragments and hedgerows, but the abundance in pastures was less than half of the abundance in the other habitat types. To disentangle the movement behaviour of the species from the spatially and temporally varying sampling effort, we applied a Bayesian state-space modelling framework with a diffusion based movement model. Males showed generally faster movement rate than females, and they moved faster within forests and hedgerows than within pastures. Contrary to the assumption of the diffusion model, individuals did not move in a continuous fashion, indicated by the large fraction of individuals that were recaptured in the site of release. However, the posterior predictive data did not deviate substantially from the real data in terms of the mean and maximum movement distances recorded, and in terms of the dependence of movement distance on time between captures. Our results suggest that an important component of the biota in Mexican agro-pasture landscapes can utilize contemporary landscape elements such as hedgerows or small forest fragments in addition to large fragments of remnant habitat. These habitats are still locally common in semi-natural ecosystems and require less intensive conservation management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Andreassen HP, Halle S, Ims R (1996) Optimal width of movement corridors for root voles: not too narrow and not too wide. J Appl Ecol 33:63–70

    Article  Google Scholar 

  • Andresen E (2005) Effects of season and vegetation type on community organization of dung beetles in a Tropical Dry Forest. Biotropica 37:291–300

    Article  Google Scholar 

  • Arellano L, Halffter G (2003) Gamma diversity: derived from and a determinant of alpha diversity and beta diversity. An analysis of three tropical landscapes. Acta Zool Mex 90:27–76

    Google Scholar 

  • Arellano L, Favila ME, Huerta C (2005) Diversity of dung and carrion beetles in Mexican fragmented tropical montane cloud forests and shade coffee plantations. Biodivers Conserv 14:601–615

    Article  Google Scholar 

  • Avendaño-Mendoza C, Morón-Ríos A, Cano EB, León-Cortés J (2005) Dung beetle community (Coleoptera: Scarabaeidae: Scarabaeinae) in a tropical landscape at the Lachua region, Guatemala. Biodivers Conserv 14:801–822

    Article  Google Scholar 

  • Baguette M, Nève G (1994) Adult movements between populations in the specialist butterfly Proclossiana eunomia (Lepidoptera:Nymphalidae). Ecol Entomol 19:1–5

    Article  Google Scholar 

  • Bjørnstad ON, Andreassen HP, Ims RA (1998) Effects of habitat patchiness and connectivity on the spatial ecology of the root vole Microtus oeconomus. J Anim Ecol 67:127–140

    Article  Google Scholar 

  • Browne DR, Peles JD., Barrett GW (1999) Effects of landscape spatial structure on movement patterns of the hispid cotton rat (Sigmodon hispidus). Landsc Ecol 14:53–65

    Article  Google Scholar 

  • Danielson BJ, Hubbard MW (2000) The influence of corridors on the movement behavior of individual Peromyscus polionotus in experimental landscapes. Landsc Ecol 15:323–331

    Article  Google Scholar 

  • Davis AJ, Holloway JD, Huijbregts H, Krikken J, Kirk-Spriggs AH, Sutton SL (2001) Dung beetles as indicators of change in forests of Northern Borneo. J Appl Ecol 38:593–616

    Article  Google Scholar 

  • Díaz A (2003) Efecto de la fragmentación de selvas en poblaciones de Scarabaeidae y Silphidae (Coleoptera) de Los Tuxtlas, Mexico, Dissertation

  • Escobar F (2004) Structure and composition of dung beetle (Scarabaeinae) assemblages in an Andean landscape, Colombia. Trop Zool 17:123–136

    Google Scholar 

  • Estrada A, Halffter G, Coates-Estrada R, Meritt Jr DA (1993) Dung beetles attracted to mammalian herbivore (Alouatta palliata) and omnivore (Nasua narica) dung in the tropical rain forest of Los Tuxtlas, Mexico. J Trop Ecol 9:45–54

    Google Scholar 

  • Estrada A, Coates-Estrada R, Meritt Jr DA (1994) Non-flying mammals and landscape changes in the tropical rain forest region of Los Tuxtlas, Mexico. Ecography 17:229–241

    Article  Google Scholar 

  • Estrada A, Coates-Estrada R, Anzures A, Cammarano P (1998) Dung and carrion beetles in tropical rain forest fragments and agricultural habitats at Los Tuxtlas, Mexico. J Trop Ecol 14:577–593

    Article  Google Scholar 

  • Fahrig L, Merriam G (1985) Habitat patch connectivity and population survival. Ecology 66:1762–1768

    Article  Google Scholar 

  • Favila ME (1993) Some ecological factors affecting the life-style of Canthon cyanellus cyanellus (Coleoptera: Scarabaeidae): an experimental approach. Ethol Ecol Evol 5:319–328

    Article  Google Scholar 

  • Favila ME (2001) Historia de vida y comportamiento de un escarabajo necrófago: Canthon cyanellus cyanellus LeConte (Coleoptera: Scarabaeinae). Folia Entomol Mex 40:245–278

    Google Scholar 

  • Favila ME (2004) Los escarabajos y la fragmentación. In: Guevara S, Laborde J, Sánchez-Ríos G (eds) Los Tuxtlas, el paisaje de la sierra. Instituto de Ecología, A.C. Xalapa, Veracruz, México, pp 135–158

    Google Scholar 

  • Favila ME, Díaz A (1997). Escarabajos coprófagos y necrófagos. In: González Soriano E, Dirzo R, Voght R (eds) Historia Natural de Los Tuxtlas. Universidad Nacional Autónoma de México, México D.F., México, pp 383–384

    Google Scholar 

  • Favila ME, Halffter G (1997) The use of indicator groups for measuring biodiversity as related to community structure and function. Acta Zool Mex (n.s.) 72:1–25

    Google Scholar 

  • Favila ME, Nolasco J, Chamorro Florescano I, Equihua M (2005) Sperm competition and evidence of sperm fertilization patterns in the carrion ball-roller beetle Canthon cyanellus cyanellus LeConte (Scarabaeidae: Scarabaeinae). Behav Ecol Sociobiol 59(1):38–43

    Article  Google Scholar 

  • Forman R (1999) Land mosaics. The ecology of landscapes and regions. Cambridge University Press, UK

    Google Scholar 

  • Gonzalez A, Lawton JH, Gilbert FS, Blackburn TM, Evans-Freke I (1998) Metapopulation dynamics, abundance, and distribution in a microecosystem. Science 281:2045–2047

    Article  PubMed  CAS  Google Scholar 

  • Haas CM (1995) Dispersal and use of corridors by birds in wooded patches on an agricultural landscape. Conserv Biol 9:845–854

    Article  Google Scholar 

  • Haddad NM (2000) Corridor length and patch colonization by a butterfly, Junonia coenia. Conserv Biol 14:738–745

    Article  Google Scholar 

  • Haddad NM, Baum KA (1999) An experimental test of corridor effects on butterfly densities. Ecol Appl 9:623–633

    Article  Google Scholar 

  • Haddad NM, Bowne DR, Cunningham A, Danielson BJ, Levey DJ, Sargent S, Spira T (2003) Corridor use by diverse taxa. Ecology 84:609–615

    Article  Google Scholar 

  • Halffter G, Matthews EG (1966) The natural history of dung beetles of the subfamily Scarabaeinae (Coleoptera: Scarabaeidae). Folia Entomol Mex 12–14:1–312

    Google Scholar 

  • Halffter G, Favila ME, V Halffter (1992) A comparative study of the structure of the scarab guild in Mexican tropical rain forests and derived ecosystems. Folia Entomol Mex 84:131–156

    Google Scholar 

  • Hanski I (1980) Spatial patterns and movements and movements in coprophagous beetles. Oikos 34:293–310

    Article  Google Scholar 

  • Hanski I, Kuussaari M, Niemen M (1994) Metapopulation structure and migration in the butterfly Melitaea cinxia. Ecology 75:747–762

    Article  Google Scholar 

  • Hanski I, Simberloff D (1997) The metapopulation approach: its history, conceptual domain, and application to conservation. In: Hanski I, Gilpin ME (eds) Metapopulation biology: ecology, genetics and evolution. Academic Press, London, UK, pp 5–26

    Google Scholar 

  • Hardie J, Gibson G, Wyatt TD (2001) Insect behaviors associated with resource finding. In: Woiwod IP, Reynolds DR, Thomas CD (eds) Insect movement: mechanisms and consequences. CAB International Publishing, UK, pp 87–110

    Google Scholar 

  • Harvey CA, Sáenz J, Montero J, Medina A, Sánchez D, Vílchez S, Hernández B, Maes JM, Sinclair FL (2004) Abundance and species richness of trees, birds, bats, butterflies and dung beetles in a silvopastoral system in the agricultural landscapes of Costa Rica and Nicaragua. In: Mannetje LT, Ramírez L, Ibrahim M, Sandoval C, Ojeda N, Ku J (eds) The importance of silvopastoral systems in rural livelihoods to provide ecosystem services. 2nd international symposium on silvopastoril systems. Universidad Autónoma de Yucatán, Mérida, México, pp 73–76

    Google Scholar 

  • Hernández B, Maes JM, Harvey CA, Vílchez S, Medina A, Sánchez D (2003) Abundancia y diversidad de escarabajos coprófagos y mariposas diurnas en un paisaje ganadero en el departamento de Rivas, Nicaragua. Agroforestería en las Américas 10:93–102

    Google Scholar 

  • Hill JK, Thomas CD, Lewis OT (1996) Effects of habitat patch size and isolation on dispersal by Hesperia comma butterflies: implications for metapopulation structure. J Anim Ecol 65:725–735

    Article  Google Scholar 

  • INEGI (2001) Ortofotos E15C59D, E15C59E, escala 1:75,000. Instituto Nacional de Estadística, Geografía e Informática. Sistema Nacional Estadístico y de Información Geográfica. México

  • Ims RA (1995) Movement patterns related to spatial structures. In: Hansson L, Fahrig L, Merriam G (eds) Mosaic landscapes and ecological processes. Chapman and Hall, London, UK, pp 85–109

    Google Scholar 

  • Jeanneret Ph, Schüpbach B, Pfiffner L, Walter Th (2003) Arthropod reaction to landscape and habitat features in agricultural landscapes. Landsc Ecol 18:253–263

    Article  Google Scholar 

  • Jonsen ID, Taylor PD (2000) Fine-scale movement behaviors of calopterygid damselflies are influenced by landscape structure: an experimental manipulation. Oikos 88:553–562

    Article  Google Scholar 

  • Klein BC (1989) Effects of forest fragmentation on dung and carrion beetle communities in Central Amazonia. Ecology 70:1715–1725

    Article  Google Scholar 

  • Krebs CJ (1999) Ecological methodology, 2nd edn. Addison Wesley Longman, Inc., New York

    Google Scholar 

  • Lecomte J, Clobert J (1996) Dispersal and connectivity in populations of the common lizard Lacerta vivipara: An experimental approach. Acta Oecologia 17:585–598

    Google Scholar 

  • León-Cortés JL, Cowley MJR., Thomas CD (1999) Detecting decline in a formerly widespread species: how common is the common blue butterfly Polyommatus icarus? Ecography 22:643–650

    Article  Google Scholar 

  • León-Cortés JL, Cowley MJR, Thomas CD (2000) The distribution and decline of a widespread butterfly Lycaena phaneas in a pastoral landscape. Ecol Entomol 25:285–294

    Article  Google Scholar 

  • León-Cortés JL, Pérez-Espinoza F, Marín L, Molina-Martínez A (2004) Complex habitat requirements and conservation needs of the only extant Baroniinae swallowtail butterfly. Anim Conserv 7:1–10

    Article  Google Scholar 

  • Martínez I, Montes de Oca E (1994) Observaciones sobre algunos factores microambientales y el ciclo biológico de dos especies de escarabajos rodadores (Coleoptera, Scarabaeidae, Canthon). Folia Entomol Mex 91:47–59

    Google Scholar 

  • Mc Geoch M, Van Rensburg BJ, Botes A (2002) The verification and application of bioindicators: a case study of dung beetles in a savannah ecosystem. J Appl Ecol 39:661–672

    Article  Google Scholar 

  • Montes de Oca E (2001) Escarabajos coprófagos de un escenario ganadero típico de la región de Los Tuxtlas, Veracruz, México: importancia del paisaje en la composición de un gremio funcional. Acta Zool Mex (n.s.) 82:111–132

    Google Scholar 

  • Otronen M, Hanski I (1983) Movement patterns in Sphaeridium: differences between species, sexes, and feeding and breeding individuals. J Anim Ecol 52:663–680

    Article  Google Scholar 

  • Ovaskainen O (2004) Habitat-specific movement parameters estimated using mark-recapture data and a diffusion model. Ecology 85:242–257

    Article  Google Scholar 

  • Ovaskainen O, Cornell SJ (2003) Biased movement at boundary and conditional occupancy times for diffusion processes. J Appl Probab 40:557–580

    Article  Google Scholar 

  • Ovaskainen O, Rekola H, Meyke E and Arjas E (2007) Bayesian methods for analyzing movements in heterogeneous landscapes from mark-recapture data. Ecology (in press)

  • Peck SB, Forsyth A (1982) Composition, structure and competitive behaviour in a guild of Ecuadorian-rain forest dung beetles (Coleoptera; Scarabaeidae). Can J Zool 60:1624–1634

    Article  Google Scholar 

  • Pineda E, Moreno C, Escobar F, Halffter G (2005) Frog, bat and dung beetle diversity in the cloud forest and coffee agroecosystems of Veracruz, Mexico. Conserv Biol 19:400–411

    Article  Google Scholar 

  • Pinkus-Rendón MA, León-Cortés JL, Ibarra-Núñez G (2006) Spider diversity in a tropical habitat gradient in Chiapas, Mexico. Divers Distrib 12:61–69

    Article  Google Scholar 

  • Rosenberg DK, Noon BR, Meslow MC (1997) Biological corridors: form, function and efficacy. BioScience 47:677–687

    Article  Google Scholar 

  • Rosenburg DK, Noon BR, Megahan JW, Meslow EC (1998) Compensatory behavior of Ensatina eschscholtzii in biological corridors: a field experiment. Can J Zool 76:117–133

    Article  Google Scholar 

  • Roslin T (2000) Dung beetle movements at two spatial scales. Oikos 91:323–335

    Article  Google Scholar 

  • Roslin T, Koivunen A (2001) Distribution and abundance of dung beetles in fragmented landscapes. Oecologia 127:69–77

    Article  Google Scholar 

  • Schtickzelle N, Joiris A, Van Dyck H and Baguette M (2007) Quantitative analysis of changes in movement behaviour within and outside habitat in a specialist butterfly. BMC Evol Biol 7:4

    Article  PubMed  Google Scholar 

  • Sutcliffe OL, Thomas CD, Peggie D (1997) Area-dependent migration by ringlet butterflies generates a mixture of patchy population and metapopulation attributes. Oecologia 109:229–234

    Article  Google Scholar 

  • Verdú JR, Arellano L, Numa C (2006) Thermoregulation in endothermic dung beetles (Coleoptera: Scarabaeidae): effect of body size and ecophysiological constraints in flight. J Insect Physiol 52:854–860

    Article  PubMed  CAS  Google Scholar 

  • Wiens JA (1989) Spatial scaling in ecology. Funct Ecol 3:385–397

    Article  Google Scholar 

  • Wiens JA (1990) Ecology 2000: an essay on future direction in ecology. Rev Chil Hist Nat 63:309–315

    Google Scholar 

  • Wiens JA (1995) Landscape mosaics and ecological theory. In: Hansson L, Fahrig L, Merriam G (eds) Mosaic landscapes and ecological processes. Chapman and Hall, London, pp 1–26

    Google Scholar 

  • Wiens JA, Crist T, With K, Milne B (1995) Fractal patterns of insect movement in microlandscape mosaics. Ecology 76:663–666

    Article  Google Scholar 

Download references

Acknowledgements

Ubaldo Caballero, José Alonso, Manuel Girón, Karla Leal, Arcángel Molina, Francisco Pérez, Francisco Rosas, Guadalupe Ramírez, and Yariely Balam helped in the field. We thank Norma E. Corona and Marissa Mora Acosta for their help with ortophoto analysis and to Carmen Huerta and Imelda Martínez for support in the lab (Instituto de Ecología, A. C.) We are very grateful to Vicente Jiménez and Reinalda Hernández for allowing us access to their land. This study was supported by CONABIO-Mexico (grant BE012), CONACYT-Mexico (grant J35230-V, 37514-V). O. Ovaskainen was supported by the Academy of Finland (grants 213457 and 211173). The first author is grateful to SEP-CONACYT for a doctoral grant (175987), and to El Colegio de la Frontera Sur, Unidad San Cristóbal and Instituto de Ecología, A. C., Xalapa, Veracruz, for their support during the development of this work. Gonzalo Halffter and Mario Favila made valuable comments to early drafts of this paper. We thank two anonymous referees for their careful review to a first version of the manuscript, and to Scott Belser for correcting our English.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucrecia Arellano.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arellano, L., León-Cortés, J.L. & Ovaskainen, O. Patterns of abundance and movement in relation to landscape structure: a study of a common scarab (Canthon cyanellus cyanellus) in Southern Mexico. Landscape Ecol 23, 69–78 (2008). https://doi.org/10.1007/s10980-007-9165-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10980-007-9165-8

Keywords

Navigation