Advertisement

Landscape Ecology

, Volume 22, Issue 10, pp 1541–1554 | Cite as

Changes in agricultural land use can explain population decline in a ladybeetle species in the Czech Republic: evidence from a process-based spatially explicit model

  • Felix J. J. A. Bianchi
  • Alois Honĕk
  • Wopke van der Werf
Research Article

Abstract

Changes in land use affect species interactions and population dynamics by modifying the spatial template of trophic interaction and the availability of resources in time and space. We developed a process-based spatially explicit model for evaluating the effects of land use on species viability by modelling foraging performance and energy sequestration in a stage structured, three-trophic population model. The model is parameterized with realistic parameters for a ladybeetle–aphid–host plant interaction, and is run in four realistic landscapes in the Czech Republic. We analysed whether changes in crop selection and fertilizer input could explain the dramatic and unexplained decline in abundance of the ladybeetle Coccinella septempunctata in the Czech Republic from 1978 to 2005. The results indicate that a major reduction in fertilizer input after the transition to a market economy, resulting in lower aphid population densities in cereal crops and negatively affecting energy sequestration, survival and reproduction of ladybeetles, provides a sufficient explanation for the observed population decline. Simulations further indicated that the population viability of C. septempunctata is highly dependent on availability of aphid prey in crops, in particular cereal, which serves as their major reproduction habitat. The results demonstrate how the abundance of naturally occurring predators, which are instrumental for biological pest control, depends upon the spatial resource template that are provided at the landscape scale.

Keywords

Coccinella septempunctata Aphid Modelling Landscape composition Trophic interactions Spatial scale SEPM 

Notes

Acknowledgements

This research was supported by the Stimulation Program Biodiversity of the Dutch Organization for Scientific Research, the DWK Program 352 of the Dutch Ministry of Agriculture, Nature and Food Quality and Grant No. 522/05/0765 of the Grant Agency of the Czech Republic.

References

  1. Anonymous (2003) Statistical yearbook of the Czech Republic. Czech Statistical Institute, PragueGoogle Scholar
  2. Anonymous (2006) Statistical yearbook of the Czech Republic. Czech Statistical Institute, PragueGoogle Scholar
  3. Arrignon F, Deconchat M, Sarthou JP, Balent G, Monteil C (2007) Modelling the overwintering strategy of a beneficial insect in a heterogeneous landscape using a multi-agent system. Ecol Mod 205:423–436CrossRefGoogle Scholar
  4. Bianchi FJJA, Booij CJH, Tscharntke T (2006) Sustainable pest regulation in agricultural landscapes: a review on landscape composition, biodiversity and natural pest control. Proc R Soc B 273:1715–1727PubMedCrossRefGoogle Scholar
  5. Bianchi FJJA, van der Werf W (2003) The effect of the area and configuration of hibernation sites on the control of aphids by Coccinella septempunctata (Coleoptera: Coccinellidae) in agricultural landscapes: a simulation study. Environ Entomol 32:1290–1304Google Scholar
  6. Corbett A, Plant RE (1993) Role of movement in the response of enemies to agroecosystem diversification: a theoretical evaluation. Environ Entomol 22:519–531Google Scholar
  7. Costamagna AC, van der Werf W, Bianchi FJJA, Landis DA (2007) Predictive model for Aphis glycines (Hemiptera: Aphididae) growth based on field populations. Agric For Entomol (in press)Google Scholar
  8. Duelli P, Obrist MK (2003) Regional biodiversity in an agricultural landscape: the contribution of seminatural habitat islands. Basic Appl Ecol 4:129–138CrossRefGoogle Scholar
  9. Duffield SJ, Bryson RJ, Young JEB, Sylvester-Bradley R, Scott RK (1997) The influence of nitrogen fertiliser on the population development of the cereal aphids Sitobion avenae (F.) and Metopolophium dirhodum (Wlk.) on field grown winter wheat. Ann Appl Biol 130:13–26CrossRefGoogle Scholar
  10. Elliott NC, Kieckhefer RW, Beck DA (2000) Adult coccinellid activity and predation on aphids in spring cereals. Biol Control 17:218–226CrossRefGoogle Scholar
  11. Elliott NC, Kieckhefer RW, Lee JH, French BW (1998) Influence of within-field and landscape factors on aphid predator populations in wheat. Landscape Ecol 14:239–252CrossRefGoogle Scholar
  12. Forman RTT (1995) Land mosaics: the ecology of landscapes and regions. Cambridge University Press, CambridgeGoogle Scholar
  13. Fryxell JM, Wilmshurst JF, Sinclair ARE, Haydon DT, Holt RD, Abrams PA (2005) Landscape scale, heterogeneity, and the availability of Serengeti grazers. Ecol Lett 8:328–335CrossRefGoogle Scholar
  14. Grünbaum D (1998) Using spatially explicit models to characterize foraging performance in heterogeneous landscapes. Am Nat 151:97–115CrossRefPubMedGoogle Scholar
  15. Halley JM, Thomas CFG, Jepson PC (1996) A model for the spatial dynamics of linyphiid spiders in farmland. J Appl Ecol 33:471–492CrossRefGoogle Scholar
  16. Hasken KH, Poehling HM (1995) Effects of different densities of fertilisers and pesticides on aphids and aphid predators in winter wheat. Agric Ecosyst Environ 107:145–150Google Scholar
  17. Hodek I (1996) Food relationships. In: Hodek I, Honĕk A (eds) Ecology of Coccinellidae. Kluwer Academic Publishers, Dordrecht, pp 143–238Google Scholar
  18. Hodek I, Iperti G, Hodkova M (1993) Long-distance flights in Coccinellidae (Coleoptera). Eur J Entomol 90:403–414Google Scholar
  19. Honĕk A (1980) Population density of aphids at the time of settling and ovariole maturation in Coccinella septempunctata (Col.: coccinellidae). Entomophaga 25:427–430CrossRefGoogle Scholar
  20. Honĕk A (1982) The distribution of overwintered Coccinella septempunctata (Col., Coccinellidae) adults in agricultural crops. Z Ang Entomol 94:311–319Google Scholar
  21. Honĕk A (1989) Overwintering and annual changes of abundance of Coccinella septempunctata in Czechoslovakia (Coleoptera, coccinellidae). Acta Entomol Bohemoslov 86:179–192Google Scholar
  22. Honĕk A (1991) Nitrogen fertilization and abundance of the cereal aphids Metopolophium dirhodum and Sitobion avenae (Homoptera, aphididae). J Plant Dis Prot 98:655–660Google Scholar
  23. Honĕk A (1997) Factors determining winter survival in Coccinella septempunctata (Col.: Coccinellidae). Entomophaga 42:119–124Google Scholar
  24. Honĕk A, Martinkova Z (2005) Long-term changes in abundance of Coccinella septempunctata (Coleoptera: Coccinellidae) in the Czech Republic. Eur J Entomol 102:443–448Google Scholar
  25. Ives AR, Kareiva P, Perry R (1993) Response of a predator to variation in prey density at three hierarchical scales: lady beetles feeding on aphids. Ecology 74:1929–1938CrossRefGoogle Scholar
  26. Kareiva P, Odell G (1987) Swarms of predators exhibit prey taxis if individual predators use area-restricted search. Am Nat 130:233–270CrossRefGoogle Scholar
  27. Kareiva P, Wennergren U (1995) Connecting landscape patterns to ecosystem and population processes. Nature 373:299–302CrossRefGoogle Scholar
  28. Lipa JJ, Pruszynski S, Bartkowski J (1975) The parasites and survival of the ladybird beetles (Coccinellidae) during winter. Acta Parasit Pol 23:453–461Google Scholar
  29. Matis JH, Kiffe TR, Matis TI, Stevenson DE (2005) Nonlinear stochastic modeling of aphid population growth. Math Biosc 198:148–168CrossRefGoogle Scholar
  30. Murrell DJ, Law R (2000) Beetles in fragmented woodlands: a formal framework for dynamics of movement in ecological landscapes. J Anim Ecol 69:471–483CrossRefGoogle Scholar
  31. Osawa N (2000) Population field studies on the aphidophagous ladybird beetle Harmonia axyridis (Coleoptera: Coccinellidae): resource tracking and population characteristics. Pop Ecol 42:115–127CrossRefGoogle Scholar
  32. Rand TA, Tylianakis JM, Tscharntke T (2006) Spillover edge effects: the dispersal of agriculturally subsidized insect natural enemies into adjacent natural habitats. Ecol Lett 9:603–614PubMedCrossRefGoogle Scholar
  33. Thorbek P, Topping CJ (2005) The influence of landscape diversity and heterogeity on spatial dynamics of agrobiont linyphiid spiders: an individual-based model. Biocontrol 50:1–33CrossRefGoogle Scholar
  34. Tscharntke T, Klein AM, Kruess A, Steffan Dewenter I, Thies C (2005) Landscape perspectives on agricultural intensification and biodiversity – ecosystem service management. Ecol Lett 8:857–874CrossRefGoogle Scholar
  35. Van der Werf W, Evans EW, Powell J (2000) Measuring and modelling the dispersal of Coccinella septempunctata (Coleoptera: Coccinellidae) in alfalfa fields. Eur J Entomol 97:487–493Google Scholar
  36. Williams IS, van der Werf W, Dewar AM, Dixon AFG (1999) Factors affecting the relative abundance of two coexisting aphid species on sugar beet. Agr For Entomol 1:119–125CrossRefGoogle Scholar
  37. With KA, Pavuk DM, Worchuck JL, Oates RK, Fisher JL (2002) Threshold effects of landscape structure on biological control in agroecosystems. Ecol Appl 12:52–65CrossRefGoogle Scholar
  38. Xia JY, Rabbinge R, van der Werf W (2003) Multistage functional responses in a ladybeetle-aphid system: scaling up from the laboratory to the field. Environ Entomol 32:151–162CrossRefGoogle Scholar
  39. Xia JY, van der Werf W, Rabbinge R (1999) Temperature and prey density on bionomics of Coccinella septempunctata (Coleoptera: Coccinellidae) feeding on Aphis gossypii (Homoptera: Aphididae) on cotton. Environ Entomol 28:307–314Google Scholar
  40. Wu JG, Hobbs R (2002) Key issues and research priorities in landscape ecology: an idiosyncratic synthesis. Landsc Ecol 17:355–365CrossRefGoogle Scholar
  41. Zhou X, Carter N, Powell W (1994) Seasonal distribution and aerial movement of adult coccinellids on farmland. Biocontrol Sc Technol 4:167–175CrossRefGoogle Scholar
  42. Zollner PA, Lima SL (1999) Search strategies for landscape-level interpatch movements. Ecology 80:1019–1030CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Felix J. J. A. Bianchi
    • 1
    • 2
  • Alois Honĕk
    • 3
  • Wopke van der Werf
    • 1
  1. 1.Department of Plant Sciences, Group Crop and Weed EcologyWageningen UniversityWageningenThe Netherlands
  2. 2.CSIRO EntomologyIndooroopillyAustralia
  3. 3.Research Institute of Crop ProductionPrahaCzech Republic

Personalised recommendations