Landscape Ecology

, Volume 21, Issue 1, pp 121–137 | Cite as

Comparison of the Sensitivity of Landscape-fire-succession Models to Variation in Terrain, Fuel Pattern, Climate and Weather

  • Geoffrey J. CaryEmail author
  • Robert E. Keane
  • Robert H. Gardner
  • Sandra Lavorel
  • Mike D. Flannigan
  • Ian D. Davies
  • Chao Li
  • James M. Lenihan
  • T. Scott Rupp
  • Florent Mouillot
Research article


The purpose of this study was to compare the sensitivity of modelled area burned to environmental factors across a range of independently-developed landscape-fire-succession models. The sensitivity of area burned to variation in four factors, namely terrain (flat, undulating and mountainous), fuel pattern (finely and coarsely clumped), climate (observed, warmer & wetter, and warmer & drier) and weather (year-to-year variability) was determined for four existing landscape-fire-succession models (EMBYR, FIRESCAPE, LANDSUM and SEM-LAND) and a new model implemented in the LAMOS modelling shell (LAMOS(DS)). Sensitivity was measured as the variance in area burned explained by each of the four factors, and all of the interactions amongst them, in a standard generalised linear modelling analysis. Modelled area burned was most sensitive to climate and variation in weather, with four models sensitive to each of these factors and three models sensitive to their interaction. Models generally exhibited a trend of increasing area burned from observed, through warmer and wetter, to warmer and drier climates with a 23-fold increase in area burned, on average, from the observed to the warmer, drier climate. Area burned was sensitive to terrain for FIRESCAPE and fuel pattern for EMBYR. These results demonstrate that the models are generally more sensitive to variation in climate and weather as compared with terrain complexity and fuel pattern, although the sensitivity to these latter factors in a small number of models demonstrates the importance of representing key processes. The models that represented fire ignition and spread in a relatively complex fashion were more sensitive to changes in all four factors because they explicitly simulate the processes that link these factors to area burned.


EMBYR FIRESCAPE LAMOS LANDSUM Model comparison SEM-LAND Simulation modelling 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agee, J.K. 1993Fire ecology of Pacific Northwest forestsIsland PressWashington, DC, USAGoogle Scholar
  2. Antonovski, M.Y., Ter-Mikaelian, M.T., Furyaev, V.V. 1992A spatial model of long-term forest fire dynamics and its applications to forests in western SiberiaShugart, H.H.Leemans, R.Bonan, G.B. eds. A Systems Analysis of the Global Boreal ForestCambridge University PressCambridge, UK373403Google Scholar
  3. Anderson, D.H., Catchpole, E.A., Mestre, N.J., Parkes, T. 1982Modelling the spread of grass firesJournal of the Australian Mathematical Society (Series B)23451466Google Scholar
  4. Baker, W.L. 1989A review of models of landscape changeLandscape Ecology2111131CrossRefGoogle Scholar
  5. Baker, W.L. 1992The landscape ecology of large disturbances in the design and management of nature reservesLandscape Ecology7181194Google Scholar
  6. Baker, W.L. 1999Spatial simulation of the effects of human and natural disturbance regimes on landscape structureMladenoff, D.J.Baker, W.L. eds. Spatial Modelling of Forest Landscapes: Approaches and ApplicationsCambridge University PressCambridge, UK277308Google Scholar
  7. Barrows, J.S., Sandberg, D.V., Hart, J.D. 1977Lightning fires in Northern Rocky Mountain forestsFinal Report for Contract Grant 16–440-CA USDA Forest Service Intermountain Fire Sciences LaboratoryMissoula, MT, USAGoogle Scholar
  8. Bessie, W.C., Johnson, E.A. 1995The relative importance of fuels and weather on fire behaviour in subalpine forestsEcology76747762Google Scholar
  9. Botkin, D.B. 1993Forest Dynamics: An Ecological ModelOxford University PressOxford, UK309Google Scholar
  10. Bristow, K.L., Campbell, G.S. 1984On the relationship between incoming solar radiation and daily maximum and minimum temperatureAgricultural and Forest Meteorology31159166CrossRefGoogle Scholar
  11. Bugmann, H.K.M., Yan, X.D., Sykes, M.T., Martin, P., Lindner, M., Desanker, P.V., Cumming, S.G. 1996A comparison of forest gap models: model structure and behaviourClimatic Change34289313Google Scholar
  12. Byram, G.M. 1959Combustion of forest fuelsDavis, K.P. eds. Forest Fire: Control and UseMcGraw-HillNew York, USA6180Google Scholar
  13. Cary, G.J. 1998Predicting Fire Regimes and their Ecological Effects in Spatially Complex LandscapesThe Australian National UniversityCanberra, Australia284Ph.D. ThesisGoogle Scholar
  14. Cary, G.J. 2002Importance of a changing climate for fire regimes in AustraliaBradstock, R.A.Gill, A.M.Williams, J.E. eds. Flammable Australia: The Fire Regimes and Biodiversity of a ContinentCambridge University PressCambridge, UK2646Google Scholar
  15. Cary, G.J., Gallant, J.C. 1997Application of a stochastic climate generator for fire danger modellingProceedings of the Biennial Australasian Bushfire Bushfire Conference, July 1997Darwin, AustraliaGoogle Scholar
  16. Cary, G.J., Banks, J.C.G. 1999Fire regime sensitivity to global climate change: an Australian perspectiveInnes, J.L.Verstraete, M.M.Beniston, M. eds. Advances in Global Change ResearchKluwer Academic PublishersDordrecht and Boston233246Google Scholar
  17. Clark, J.D. 1989Ecological disturbance as a renewal process: theory and application to fire historyOikos561730Google Scholar
  18. Clark, J.D. 1990Fire and climate change during the last 750 years in northwestern MinnesotaEcological Monographs60135159Google Scholar
  19. Clark, J.S. 1993Fireclimate changeand forest processes during the past 2000 yearsGeological Society of AmericaSpecial Paper276295308Google Scholar
  20. Cramer, W., Kicklighter, D.W., Bondeau, A., Moore, B.,III, Churkina, G., Nemry, B., Ruimy, A., Schloss, A.L. 1999The participants of the Potsdam NPP intermodel comparison 1999. Comparin global models of terrestrial net primary productivity (NPP): overview and key resultsGlobal Change Biology5115Google Scholar
  21. Crutzen, P.J., Goldammer, J.G. 1993Fire in the Environment: The Ecological, Atmospheric and Climatic Importance of Vegetation FiresJohn Wiley and SonsNew York, New York, USAGoogle Scholar
  22. CSIRO1996Climate Change Scenarios for the Australian RegionClimate Impact Group, CSIRO Division of Atmospheric ResearchMelbourne, AustraliaGoogle Scholar
  23. Dale, V.H., Doyle, T.W., Shugart, H.H. 1985A comparison of tree growth modelsEcological Modelling29145169CrossRefGoogle Scholar
  24. Davis, F.W., Burrows, D.A. 1993Modelling fire regimes in Mediterranean landscapesLevin, S.A.Powell, T.M.Steele, J.H. eds. Patch DynamicsSpringer-VerlagNew York, USA247259Google Scholar
  25. DeAngelis, D.L., Gross, L.J., Huston, M.A., Wolff, W.F., Fleming, D.M., Comiskey, E.J., Sylvester, S.M. 1998Landscape modelling for everglades ecosystem restorationEcosystems16475CrossRefGoogle Scholar
  26. Flannigan, M.D., Harrington, J.B. 1988A study of the relation of meteorological variables to monthly provincial area burned by wildfire in Canada 1953–80Journal of Applied Meteorology27441452CrossRefGoogle Scholar
  27. Flannigan, M.D., Wagner, C.E. 1991Climate change and wildfire in CanadaCanadian Journal of Forest Research216672Google Scholar
  28. Forestry Canada Fire Danger Group 1992. Development and structure of the Canadian Forest Fire Behaviour Prediction Systems. Report ST-X-3, Forestry Canada, Science and Sustainable Development Directorate, Ottawa, pp. 63.Google Scholar
  29. Forestry Canada Fire Danger Group1992Development and structure of the Canadian Forest Fire Behaviour Prediction SystemsForestry CanadaScience and Sustainable Development DirectorateOttawa63Report ST-X-3Google Scholar
  30. Fox, B.J., Fox, M.D., McKay, G.M. 1979Litter accumulation after fire in a eucalypt forestAustralian Journal of Botany27157165CrossRefGoogle Scholar
  31. Fuquay, D.M. 1980Lightning that ignites forest firesProceedings of the 6th Conference on Fire and Forest Meteorology, Society of American ForestersSeattle, WA, USAGoogle Scholar
  32. Gardner, R.H., O’Neill, R.V., Mankin, J.B., Kumar, D. 1980Comparative error analysis of six predator-prey modelsEcology61323332Google Scholar
  33. Gardner, R.H., Cale, W.G., O’Neill, R.V. 1982Robust analysis of aggregation errorEcology6317711179Google Scholar
  34. Gardner, R.H., Hargrove, W.W., Turner, M.G., Romme, W.H. 1996Climate changedisturbances and landscape dynamicsWalker, B.H.Steffen, W.L. eds. Global Change and Terrestrial EcosystemsCambridge University PressCambridge, UK149172Google Scholar
  35. Gill, A.M. 1975Fire and the Australian flora: a reviewAustralian Forestry38425Google Scholar
  36. Hargrove, W.W., Gardner, R.H., Turner, M.G., Romme, W.H., Despain, D.G. 2000Simulating fire patterns in heterogeneous landscapesEcological Modelling135243263CrossRefGoogle Scholar
  37. Hely, C., Flannigan, M., Bergeron, Y., McRae, D. 2001Role of vegetation and weather on fire behaviour in the Canadian mixedwood boreal forest using two fire behaviour prediction systemsCanadian Journal of Forest Research31430441Google Scholar
  38. Hirsch, K.G. 1996Canadian Forest Fire Behavior Prediction (FBP) System: User's GuideNorthern Forestry CentreCanadian Forest ServiceEdmonton, AlbertaSpecial Report 7Google Scholar
  39. IPCC 2001. Climate Change 2001: The Scientific Basis. IPCC Third Assessment Report: Summaries for Policymakers Working Group I Climate Change 2001.Google Scholar
  40. Jackson, W.D. 1968Fireairwater and earth – an elemental ecology of TasmaniaProceedings of the Ecological Society of Australia3916Google Scholar
  41. Keane, R.E., Morgan, P., Running, S.W. 1996FIRE-BGC – a mechanistic ecological process model for simulating fire succession on coniferous forest landscapes of the northern Rocky MountainsUSDA Forest Service Intermountain Research StationMissoula, MT, USAResearch Paper INT-RP-484Google Scholar
  42. Keane, R.E., Parsons, R., Hessburg, P. 2002Estimating historical range and variation of landscape patch dynamics: limitations of the simulation approachEcological Modelling1512949CrossRefGoogle Scholar
  43. Keane, R.E., Finney, M.A. 2003The simulation of landscape fireclimateand ecosystem dynamicsVeblen, T.T.Baker, W.L.Montenegro, G.Swetnam, T.W. eds. Fire and Global Change in Temperate Ecosystems of the Western AmericasSpringer-VerlagNew York, USA3266Google Scholar
  44. Keane, R.E., Cary, G.J., Parsons, R. 2003Using simulation to map fire regimes: an evaluation of approaches, strategies, and limitationsInternational Journal of Wildland Fire12309322CrossRefGoogle Scholar
  45. Keane, R.E., Cary, G.J., Davies, I.D., Flannigan, M.D., Gardner, R.H., Lavorel, S., Lenihan, J.M., Li, C., Rupp, S.T. 2004A classification of landscape fire succession models: spatial simulations of fire and vegetation dynamicsEcological Modelling179327CrossRefGoogle Scholar
  46. Knight, D.H. 1987Parasites, lightning, and the vegetation mosaic in wilderness landscapesTurner, M.G. eds. Landscape Heterogeneity and DisturbanceSpringer-VerlagNew York5983Google Scholar
  47. Lavorel, S., Davies, I.D., Noble, I.R. 2000LAMOS: A LAndscape MOdelling ShellHawkes, B.C.Flannigan, M.D. eds. Landscape Fire Modelling-Challenges and Opportunities. Northern Forestry Centre Information Report NOR-X-371Natural Resources CanadaCanadian Forest Service EdmontonAlberta, Canada2528Google Scholar
  48. Lertzman, K., Fall, J., Brigitte, D. 1998Three kinds of heterogeneity in fire regimes: at the crossroads of fire history and landscape ecologyNorthwest Science72423Google Scholar
  49. Li, C. 2000Reconstruction of natural fire regimes through ecological modellingEcological Modelling134129144CrossRefGoogle Scholar
  50. Li, C. 2002Estimation of fire frequency and fire cycle: a computational perspectiveEcological Modelling154103120CrossRefGoogle Scholar
  51. Li C. 2003. Modelling the influence of fire ignition source patterns on fire regimes of west-central Alberta. Proceedings of the 4th International Conference on Integrating GIS and Environmental Modelling: Problems, Prospects and Research Needs. Banff, Alberta, Canada, September 2–8, 2000. (CDROM).Google Scholar
  52. Li, C. 2004Simulating Forest Fire Regimes in the Foothills of the Canadian Rocky MountainsPerera, A.H.Buse, L.J.Weber, M.G. eds. Emulating Natural Forest Landscape Disturbances: Concepts and ApplicationsColumbia University PressNew York, NY, USAGoogle Scholar
  53. Li, C., Flannigan, M.D., Corns, I.G.W. 2000Influence of potential climate change on forest landscape dynamics of west-central AlbertaCanadian Journal of Forest Research3019051912CrossRefGoogle Scholar
  54. Li, C., Barclay, H.J. 2001Fire disturbance patterns and forest age structureNatural Resource Modelling14495521Google Scholar
  55. Li, C., Apps, M.J. 2002Fire regimes and the carbon dynamics of boreal forest ecosystemsShaw, C.H.Apps, M.J. eds. The Role of Boreal Forests and Forestry in the Global Carbon CycleNorthern Forestry CentreCanadian Forest ServiceEdmonton, Alberta, Canada107118Proceedings of IBFRA 2000 conferenceGoogle Scholar
  56. Matalas, N.C. 1967Mathematical assessment of synthetic hydrologyWater Resources Research3937945Google Scholar
  57. McArthur, A.G. 1967Fire behaviour in eucalypt forestsCommonwealth of Australia Forest and Timber Bureau Leaflet107Canberra AustraliaGoogle Scholar
  58. McCarthy, M.A., Cary, G.J. 2002Fire regimes of landscapes: models and realitiesBradstock, R.A.Gill, A.M.Williams, J.E. eds. Flammable Australia: The Fire Regimes and Biodiversity of a ContinentCambridge University PressCambridge, UK7693Google Scholar
  59. Moreno, J.M., Oechel, W.C. 1994The Role of Fire in Mediterranean EcosystemsSpringerBerlinGoogle Scholar
  60. Noble, I.R., Bary, G.A.V., Gill, A.M. 1980McArthur’s fire-danger meters expressed as equationsAustralian Journal of Ecology5201203Google Scholar
  61. Olson, J.S. 1963Energy storage and the balance of producers and decomposers in ecological systemsEcology44322332Google Scholar
  62. Pan, Y.D., Melillo, J.M., McGuire, A.D., Kicklighter, D.W., Pitelka, L.F., Hibbard, K., Pierce, L.L., Running, S.W., Ojima, D.S., Parton, W.J., Schimel, D.S. 1998Modeled responses of terrestrial ecosystems to elevated atmospheric CO2: a comparison of simulations by the biogeochemistry models of the Vegetation/Ecosystem Modelling and Analysis Project (VEMAP)Oecologia114389404CrossRefGoogle Scholar
  63. Raison, R.J., Woods, P.V., Khanna, P.K. 1983Dynamics of fine fuels in recurrently burnt eucalypt forestsAustralian Forestry46294302Google Scholar
  64. Richardson, C.W. 1981Stochastic simulation of daily precipitation, temperatureand solar radiationWater Resources Research17182190Google Scholar
  65. Roderick, M.L. 1999Estimating the diffuse component from daily and monthly measurements of global radiationAgricultural and Forest Meteorology95169185CrossRefGoogle Scholar
  66. Roderick, M.L., Farquhar, G.D. 2002The cause of decreased pan evaporation over the last 50 yearsScience29814101411PubMedGoogle Scholar
  67. Romme, W.H. 1982Fire and landscape diversity in subalpine forests of Yellowstone National ParkEcological Monographs52199221Google Scholar
  68. Romme, W.H., Turner, M.G. 1991Implications of global climate change for biogeographic patterns in the greater Yellowstone ecosystemConservation Biology5373386CrossRefGoogle Scholar
  69. Rose, K.A., Brenkert, A.L., Cook, R.B., Gardner, R.H., Hettelingh, J.P. 1991Systematic comparison of ILWAS, MAGIC, and ETD watershed acidification models: 1Mapping among model inputs and deterministic results. Water Resources Research2725772598Google Scholar
  70. Rothermel, R.C. 1972A mathematical model for predicting fire spread in wildland fuelsUS Department of AgricultureForest ServiceIntermountain Forest and Range Experiment StationOgden, UT, USAResearch Paper INT-115Google Scholar
  71. Rupp, T.S., Starfield, A.M., Chapin, F.S. 2000A frame-based spatially explicit model of subartic vegetation response to climate change: comparison with a point modelLandscape Ecology15383400CrossRefGoogle Scholar
  72. SAS 2000. OnlineDoc, Version 8. SAS Institute Inc. SAS Institute Inc., Cary, NC.Google Scholar
  73. Schmidt, K.M., Menakis, J.P., Hardy, C.C., Bunnell, D.L., Sampson, N. 2002Development of coarse-scale spatial data for wildland fire and fuel managementUS Department of AgricultureForest ServiceRocky Mountains Research stationOgden, UT, USAGeneral Technical Report RMRS-GTR-CD-000Google Scholar
  74. Shugart, H.H. 2001Forest gap modelsMay, R.M. eds. Encyclopedia of Global Environmental Change Volume 2: The Earth System: Biological and Ecological Dimensions of Global Environmental ChangeWiley BooksLondon, UKGoogle Scholar
  75. Starfield, A.M., Chapin, F.S. 1996Model of transient changes in arctic and boreal vegetation in response to climate and land use changeEcological Applications6842864Google Scholar
  76. Stocks, B.J., Fosberg, M.A., Lynaham, T.J., Mearns, L., Wotton, B.M., Yang, Q., Lin, J.Z., Lawrence, K., Hartley, G.R., Mason, J.A., McKenney, D.W. 1998Climate change and forest fire potential in Russian and Canadian boreal forestsClimatic Change38113CrossRefGoogle Scholar
  77. Suffling, R., Lihou, C., Morand, Y. 1988Control of landscape diversity by catastrophic disturbance: a theory and a case study of fire in Canadian boreal forestEnvironmental Management127378CrossRefGoogle Scholar
  78. Swanson, F.J., Franklin, J.F., Sedell, J.R. 1997Landscape patterns, disturbanceand management in the Pacific NorthwestUSAZonnneveld, I.S.Forman, R.T.T. eds. Changing Landscapes: An Ecological PerspectiveSpringer-VerlagNew York, NY, USA191213Google Scholar
  79. Swetnam, T.W. 1993Fire history and climate change in giant sequoia grovesScience262885889Google Scholar
  80. Turner, M.G., Gardner, R.H., Dale, V.H., O’Neill, R.V. 1989aPredicting the spread of disturbance across heterogeneous landscapesOikos55121129Google Scholar
  81. Turner, M.G., Costanza, R., Sklar, F.H. 1989bMethods to evaluate the performance of spatial simulation modelsEcological Modelling47118Google Scholar
  82. Turner, M.G., Romme, W.H., Gardner, R.H., Hargrove, W.W. 1997Effects of fire size and pattern on early succession in Yellowstone National ParkEcological Monographs67411433Google Scholar
  83. Wagner, C.E. 1969A simple fire-growth modelForestry Chronicle4534Google Scholar
  84. Wagner, C.E. 1987Development and structure of the Canadian Forest Fire Weather Index SystemCanadian Forest ServiceOttawaCanada36Forestry Technical Report 35Google Scholar
  85. VEMAP 1996. The vegetation/ecosystem modelling and analysis project (VEMAP): assessing the potential responses of natural ecosystems to climate change. EPRI.Google Scholar
  86. Walker, J. 1981Fuel dynamics in Australian vegetationGill, A.M.Groves, R.H.Noble, I.R. eds. Fire and The Australian BiotaAustralian Academy of ScienceCanberra, Australia101127Google Scholar
  87. Wotton, B.M., Flannigan, M.D. 1993Length of fire season in a changing climateForestry Chronicle69187192Google Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Geoffrey J. Cary
    • 1
    • 2
    Email author
  • Robert E. Keane
    • 3
  • Robert H. Gardner
    • 4
  • Sandra Lavorel
    • 5
  • Mike D. Flannigan
    • 6
  • Ian D. Davies
    • 7
  • Chao Li
    • 8
  • James M. Lenihan
    • 9
  • T. Scott Rupp
    • 10
  • Florent Mouillot
    • 11
  1. 1.School of Resources, Environment and SocietyThe Australian National UniversityCanberraAustralia
  2. 2.Bushfire Cooperative Research CentreAustralia
  3. 3.Rocky Mountain Research StationUSDA Forest ServiceMissoulaUSA
  4. 4.Appalachian LaboratoryUniversity of Maryland Center for Environmental ScienceFrostburgUSA
  5. 5.Laboratoire d'Ecologie AlpineCNRSGrenobleFrance
  6. 6.Canadian Forest ServiceSault Ste MarieCanada
  7. 7.Ecosystem Dynamics, Research School of Biological SciencesAustralian National UniversityCanberraAustralia
  8. 8.Canadian Forest ServiceEdmontonCanada
  9. 9.Pacific Northwest Research StationUSDA Forest ServiceCorvallisUSA
  10. 10.Department of Forest SciencesUniversity of Alaska FairbanksFairbanksUSA
  11. 11.IRD UR060 – CEFE/CNRSMontpellierFrance

Personalised recommendations