Abstract
There exists a gradient in dispersal behavior from passive to active, which reflects organisms’ dependence upon currents vs. self-propelled movement. We asked: Do currents modify organism–landscape interactions to influence recruitment success along this dispersal gradient? Using a spatially-explicit cellular model, we simulated the recruitment success of three generalized dispersal strategies (walkers, swimmers, and drifters) through hierarchically structured benthic landscapes. We evaluated the relative recruitment success (recruited population size, overall area occupied, time to recruit) of the three dispersal strategies in similar landscapes, as well as the consequences of varying the total proportion of habitat suitable for recruitment, and the scale and pattern of habitat patchiness on recruitment success. In the presence of currents, swimmers and drifters generally recruited over larger areas and in less time than walkers. Differences among the dispersal strategies’ recruitment success were most pronounced when an intermediate number of good habitat cells (16–48% of landscape) were broadly dispersed across the landscape. Although recruitment success always increased with increasing proportion of good habitat, drifters were more sensitive, and swimmers less sensitive, to these landscape changes than walkers. We also found that organisms dispersing within currents typically responded non-linearly (logarithmically or exponentially) to increasing proportion of total good habitat, whereas walkers more often responded linearly.
This is a preview of subscription content, access via your institution.
References
C.A. Acosta (1999)
Benthic dispersal of Caribbean spiny lobster among insular habitats: implications for the conservation of exploited marine species Conserv. Biol. 13 603–612 10.1046/j.1523-1739.1999.97477.xH. Akaike (1973) Information theory and the extension of the maximum likelihood principle B.N. Petrov F. Caski (Eds) Proceedings of the Second International Symposium on␣Information Theory Akademiai Kiado Budapest 267–281
P.R. Armsworth M.K. James L. Bode (2001)
When to press on and when to turn back: dispersal strategies for reef fish larvae Am. Nat. 157 434–450 10.1086/319322 1:STN:280:DC%2BD1crjsVSksA%3D%3D 18707252M.W. Beck K.L. Heck
Jr. K.W. Able D.L. Childers D.B. Eggleston B.M. Gillanders B.S. Halpern C.G. Hays K. Hoshino T.J. Minello R.J. Orth P.F. Sheridan M.P. Weinstein (2001) The identification, conservation, and␣management of estuarine and marine nurseries for fish and invertebrates Bioscience 51 633–641 10.1641/0006-3568(2001)051[0633:TICAMO]2.0.CO;2L.W. Botsford A. Hastings S.D. Gaines (2001)
Dependence of sustainability on the configuration of marine reserves and larval dispersal distance Ecol. Lett. 4 144–150 10.1046/j.1461-0248.2001.00208.xM. Cabeza A. Moilanen (2003)
Site-selection algorithms and habitat loss Conserv. Biol. 17 1402–1413 10.1046/j.1523-1739.2003.01421.xM.H. Carr J.E. Neigel J.A. Estes S.J. Andelman R.R. Warner J.L. Largier (2003)
Comparing marine and terrestrial ecosystems: implications for the design of coastal marine reserves Ecol. Appl. 13 S90–S107R.K. Cowen K.M.M. Lwiza S. Sponaugle C.B. Paris D.B. Olson (2000)
Connectivity of marine populations: open or closed? Science 287 857–859 10657300 1:CAS:528:DC%2BD3cXhtVehtb4%3D 10.1126/science.287.5454.857C.P. Dahlgren D.B. Eggleston (2000)
Ecological processes underlying ontogenetic habitat shifts in a coral reef fish Ecology 81 2227–2240 10.2307/177110M.C. Darcy D.B. Eggleston (2005)
Do habitat corridors influence animal dispersal and colonization in estuarine systems? Landscape Ecol. 20 841–855 10.1007/s10980-005-3704-yD.B. Eggleston (1995)
Recruitment in Nassau grouper Epinephelus striatus: post-settlement abundancemicrohabitat features, and ontogenetic habitat shifts Mar. Ecol. Prog. Ser. 124 9–22J. M. Elliott (2003)
A comparative study of the dispersal of 10 species of stream invertebrates Freshw. Biol. 48 1652–1668 10.1046/j.1365-2427.2003.01117.xL. Fahrig (1988)
A general model of populations in patchy habitats Appl. Math. Comput. 27 53–66 10.1016/0096-3003(88)90098-7L. Fahrig G. Merriam (1985)
Habitat patch connectivity and population survival Ecology 66 1762–1768 10.2307/2937372L. Fahrig J. Paloheimo (1988)
Effect of spatial arrangement of habitat patches on local population size Ecology 69 468–475 10.2307/1940445S. Firle R. Bommarco B. Ekbom M. Natiello (1998)
The influence of movement and resting behavior on the range of three carabid beetles Ecology 79 2113–2122 10.2307/176714R.B.J. Forward R.A. Tankersley (2001)
Selective tidal-stream transport of marine animals Oceanogr. Mar. Biol. 39 305–353 10.1016/S0065-2881(01)39011-9Froese R. and Pauly D. (eds.) 2003. FishBase: A Global Information System on Fishes, 22 March 2004 edition. World Wide Web electronic publication, www.fishbase.org.
S.D. Gaines B. Gaylord J.L. Largier (2003)
Avoiding current oversights in marine reserve design Ecol. Appl. 13 S32–S46R.H. Gardner (1999) RULE: Map generation and a spatial analysis program J.M. Klopatek R.H. Gardner (Eds) Landscape Ecological Analysis: Issues and Applications Springer-Verlag New York 280–303
R.N. Gibson (2003)
Go with the flow: tidal migration in marine animals Hydrobiologia 503 153–161 10.1023/B:HYDR.0000008488.33614.62B.M. Gillanders K.W. Able J.A. Brown D.B. Eggleston P.F. Sheridan (2003)
Evidence of connectivity between juvenile and adult habitats for mobile marine fauna: an important component of nurseries Mar. Ecol. Prog. Ser. 247 281–295B.J. Goodwin L. Fahrig (2002)
How does landscape structure influence landscape connectivity? Oikos 99 552–570 10.1034/j.1600-0706.2002.11824.xD. Hiebeler (2004)
Competition between near and far dispersers in spatially structured habitats Theor. Popul. Biol. 66 205–218 15465122 10.1016/j.tpb.2004.06.004E.A. Irlandi M.K. Crawford (1997)
Habitat linkages: the effect of intertidal saltmarshes and adjacent subtidal habitats on abundance, movement, and growth of an estuarine fish Oecologia 110 222–230 10.1007/s004420050154L.R. Iverson M.W. Schwartz A.M. Prasad (2004)
Potential colonization of newly available tree-species habitat under climate change: an analysis for five eastern US species Landscape Ecol. 19 787–799 10.1007/s10980-005-3990-5A.R. Johnson B.T. Milne J.A. Wiens (1992)
Diffusion in fractal landscapes: simulations and experimental studies of tenebrionid beetle movements Ecology 73 1968–1983 10.2307/1941448I.D. Jonsen R.S. Bourchier J. Roland (2001)
The influence of matrix habitat on Aphthona flea beetle immigration to leafy spurge patches Oecologia 127 287–294 10.1007/s004420000589A.W. King K.A. With (2002)
Dispersal success on spatially structured landscapes: when do spatial pattern and dispersal behavior really matter? Ecol. Model. 147 23–39 10.1016/S0304-3800(01)00400-8B.P. Kinlan S.D. Gaines (2003)
Propagule dispersal in marine and terrestrial environments: a community perspective Ecology 84 2007–2020N.B. Kotliar J.A. Wiens (1990)
Multiple scales of patchiness and patch structure: a hierarchical framework for the study of heterogeneity Oikos 59 253–260M.A. Krawchuk P.D. Taylor (2003)
Changing importance of habitat structure across multiple spatial scales for three species of insects Oikos 103 153–161 10.1034/j.1600-0706.2003.12487.xR.J. Lambeck (1997)
Focal species: a multi-species umbrella for nature conservation Conserv. Biol. 11 849–856 10.1046/j.1523-1739.1997.96319.xS. Lavorel R.H. Gardner R.V. O’Neill (1993)
Analysis of patterns in hierarchically structured landscapes Oikos 67 521–528H. Leslie M. Ruckelhaus I.R. Ball S.J. Andelman H.P. Possingham (2003)
Using siting algorithms in the design of marine reserve networks Ecol. Appl. 13 S185–S198S.L. Lima P.A. Zollner (1996)
Towards a behavioral ecology of ecological landscapes Trend. Ecol. Evol. 11 131–135 10.1016/0169-5347(96)81094-9M.I. McCormick (1998)
Condition and growth of reef fish at settlement: is it important? Aust. J. Ecol. 23 258–264 10.1111/j.1442-9993.1998.tb00729.xI.J. Myung M.A. Pitt (1997)
Applying Occam's razor in modeling cognition: a Bayesian approach Psychon. Bell. Rev. 4 79–95R. Nathan N. Sapir A. Trakhtenbrot G.G. Katul G. Bohrer M. Otte R. Avissar M.B. Soons H.S. Horn M. Wikelski S.A. Levin (2005)
Long-distance biological transport processes through air: can nature's complexity be unfolded in silico? Divers. Distrib. 11 131–137 10.1111/j.1366-9516.2005.00146.xC. Nilsson E. Andersson D.M. Merritt M.E. Johansson (2002)
Differences in riparian flora between riverbanks and river lakeshores explained by dispersal traits Ecology 83 2878–2887 10.1890/0012-9658(2002)083[2878:DIRFBR]2.0.CO;2O. Ovankainen K. Sato J. Bascompte I. Hanski (2002)
Metapopulation models for extinction threshold in spatially correlated landscapes J. Theor. Biol. 215 95–108 10.1006/jtbi.2001.2502C.M. Roberts (1997)
Connectivity and management of Caribbean coral reefs Science 278 1454–1457 9367956 1:CAS:528:DyaK2sXnsVGlur8%3D 10.1126/science.278.5342.1454M. Ruckelshaus C. Hartway P. Kareiva (1997)
Assessing the data requirements of spatially explicit dispersal models Conserv. Biol. 11 1298–1306 10.1046/j.1523-1739.1997.96151.xR.E. Russell R.K. Swihart Z. Feng (2003)
Population consequences of movement decisions in a patchy landscape Oikos 103 142–152 10.1034/j.1600-0706.2003.12418.xR.J. Schmitt S.J. Holbrook (2002)
Correlates of spatial variation in settlement of two tropical damselfishes Mar. Freshw. Res. 53 329–337 10.1071/MF01138R.L. Schooley J.A. Weins (2003)
Finding habitat patches and directional connectivity Oikos 102 559–570 10.1034/j.1600-0706.2003.12490.xR.J. Steidl L. Thomas (2001) Power analysis and experimental design S.M. Scheiner J. Gurevitch (Eds) Design and Analysis of Ecological Experiments Oxford University Press, Inc New York 14–36
G.D. Sutherland A.S. Harestad K. Price K.P. Lertzman (2000)
Scaling of natal dispersal distance in terrestrial birds and mammals Ecol. Soc. 4 16J.J. Tewksbury D.J. Levey N.M. Haddad S. Sargent J.L. Orrock A. Welden B.J. Danielson J. Brinkerhoff E.I. Damschen P. Townsend (2002)
Corridors affect plants, animals, and their interactions in fragmented landscapes Proc. Natl. Acad. Sci. 99 12923–12926 12239344 1:CAS:528:DC%2BD38XnvFGht78%3D 10.1073/pnas.202242699J. Tews U. Brose V. Grimm K. Tielbörger M.C. Wichmann M. Schwager F. Jeltsch (2004)
Animal species diversity driven by habitat heterogeneity/diversity: the importance of keystone structures J. Biogeogr. 31 79–92C.F.G. Thomas P. Brain P.C. Jepson (2003)
Aerial activity of linyphiid spiders: modelling dispersal distances from meteorology and behaviour J. Appl. Ecol. 40 912–927 10.1046/j.1365-2664.2003.00844.xR. Thompson J.L. Munro (1977)
Aspects of the biology and ecology of Caribbean reef fishes: Serranidae (hinds and groupers) J. Fish Biol. 12 115–146 10.1111/j.1095-8649.1978.tb04158.xH. Tuomisto K. Ruokolainen M. Yli-Halla (2003)
Dispersal, environmentand floristic variation of western Amazonian forests Science 299 241–244 12522248 1:CAS:528:DC%2BD3sXhs1Gktg%3D%3D 10.1126/science.1078037K.A. With (2002)
The landscape ecology of invasive spread Conserv. Biol. 16 1192–1203 10.1046/j.1523-1739.2002.01064.xK.A. With T.O. Crist (1995)
Critical thresholds in species’ responses to landscape structure Ecology 76 2446–2459 10.2307/2265819E. Wolanski P. Doherty J. Carleton (1997)
Directional swimming of fish larvae determines connectivity of fish populations on the Great Barrier Reef Naturwissenschaften 84 262–268 1:CAS:528:DyaK2sXksVOkt7Y%3D 10.1007/s001140050394P.A. Zollner S.L. Lima (1997)
Landscape-level perceptual abilities in white-footed mice: perceptual range and the detection of forested habitat Oikos 80 51–60P.A. Zollner S.L. Lima (1999)
Search strategies for landscape-level interpatch movements Ecology 80 1019–1030 10.2307/177035P.A. Zollner S.L. Lima (2005)
Behavioral tradeoffs when dispersing across a patchy landscape Oikos 108 219–230 10.1111/j.0030-1299.2005.13711.x
Author information
Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Drew, C.A., Eggleston, D.B. Currents, landscape structure, and recruitment success along a passive–active dispersal gradient. Landscape Ecol 21, 917–931 (2006). https://doi.org/10.1007/s10980-005-5568-6
Received:
Accepted:
Issue Date:
Keywords
- Cellular model
- Dispersal strategy
- Habitat shifts
- Hydrodynamic currents
- Recruitment success