Skip to main content

Adaptive vs. neutral genetic diversity: implications for landscape genetics

Abstract

Genetic diversity is important for the maintenance of the viability and the evolutionary or adaptive potential of populations and species. However, there are two principal types of genetic diversity: adaptive and neutral – a fact widely neglected by non-specialists. We introduce these two types of genetic diversity and critically point to their potential uses and misuses in population or landscape genetic studies. First, most molecular-genetic laboratory techniques analyse neutral genetic variation. This means that the gene variants detected do not have any direct effect on fitness. This type of genetic variation is thus selectively neutral and tells us nothing about the adaptive or evolutionary potential of a population or a species. Nevertheless, neutral genetic markers have great potential for investigating processes such as gene flow, migration or dispersal. Hence, they allow us to empirically test the functional relevance of spatial indices such as connectivity used in landscape ecology. Second, adaptive genetic variation, i.e. genetic variation under natural selection, is analysed in quantitative genetic experiments under controlled and uniform environmental conditions. Unfortunately, the genetic variation (i.e. heritability) and population differentiation at quantitative, adaptive traits is not directly linked with neutral genetic diversity or differentiation. Thus, neutral genetic data cannot serve as a surrogate of adaptive genetic data. In summary, neutral genetic diversity is well suited for the study of processes within landscapes such as gene flow, while the evolutionary or adaptive potential of populations or species has to be assessed in quantitative genetic experiments. Landscape ecologists have to mind these differences between neutral and adaptive genetic variation when interpreting the results of landscape genetic studies.

This is a preview of subscription content, access via your institution.

References

  • Antolin M.F., Savage L.T. and Eisen R.J. 2006. Landscape features influence genetic structure of Black-Tailed Prairie Dogs (Cynomys ludovicianus). Landsc. Ecol. 21: 867–875.

    Google Scholar 

  • J.K. Conner D.L. Hartl (2004) A Primer to Ecological Genetics Sinauer Sunderland, Massachusetts, USA

    Google Scholar 

  • C. Darwin (1859) The Origin of Species by Means of Natural Selection John Murray London, UK

    Google Scholar 

  • D.S. Falconer T.F.C. MacKay (1996) Introduction to Quantitative Genetics Longman Harlow, UK

    Google Scholar 

  • R. Frankham J.D. Ballou D.A. Briscoe (2004) A Primer to Conservation Genetics Cambridge University Press Cambridge, UK

    Google Scholar 

  • D.J. Futuyma (2005) Evolution Sinauer Sunderland, Massachusetts, USA

    Google Scholar 

  • J.A. Godoy P. Jordano (2001) ArticleTitleSeed dispersal by animals: exact identification of source trees with endocarp DNA microsatellites Mol. Ecol. 10 2275–2283 Occurrence Handle11555269 Occurrence Handle1:STN:280:DC%2BD3MrgslWiug%3D%3D Occurrence Handle10.1046/j.0962-1083.2001.01342.x

    PubMed  CAS  Article  Google Scholar 

  • D.L. Hartl A.G. Clark (1997) Principles of Population Genetics Sinauer Sunderland, Massachusetts, USA

    Google Scholar 

  • R. Holderegger F. Gugerli C. Scheidegger P. Taberlet (In press) Integrating genetics with landscape ecology to infer spatio-temporal processes F. Kienast R. Gosh O. Wildi (Eds) A Changing World: Challenges for Landscape Research Springer Dordrecht, NL

    Google Scholar 

  • R.B. Jackson C.R. Linder M. Lynch M. Puruganen S. Sommerville S.S. Thayer (2002) ArticleTitleLinking molecular insight and ecological research Trends Ecol. Evol. 17 409–414 Occurrence Handle10.1016/S0169-5347(02)02571-5

    Article  Google Scholar 

  • M. Kimura (1983) The Neutral Theory of Molecular Evolution Cambridge University Press Cambridge, UK

    Google Scholar 

  • A. Kremer J. Kleinschmit J. Cottrell et al. (2002) ArticleTitleIs there a correlation between chloroplastic and nuclear divergenceor what are the roles of history and selection on genetic diversity in European oaks For. Ecol. Manage. 156 75–87 Occurrence Handle10.1016/S0378-1127(01)00635-1

    Article  Google Scholar 

  • R.G. Latta (2003) ArticleTitleGene flow, adaptive population divergence and comparative population structure across loci New Phytol. 161 51–58 Occurrence Handle10.1046/j.1469-8137.2003.00920.x

    Article  Google Scholar 

  • R.G. Latta (2006) ArticleTitleUsing comparisons among different classes of genetic markers to infer spatial processes Landscape Ecol. 21 809–820

    Google Scholar 

  • W.-H. Li D. Graur (1991) Fundamentals of Molecular Evolution Sinauer Sunderland, Massachusetts, USA

    Google Scholar 

  • H. Li J. Wu (2004) ArticleTitleUse and misuse of landscape indices Landscape Ecol. 19 389–399 Occurrence Handle10.1023/B:LAND.0000030441.15628.d6

    Article  Google Scholar 

  • A. Lowe S. Harris P. Ashton (2004) Ecological Genetics. Design, Analysis and Application Blackwell Oxford, UK

    Google Scholar 

  • S. Manel M.K. Schwartz G. Luikart P. Taberlet (2003) ArticleTitleLandscape genetics: combining landscape ecology and population genetics Trends Ecol. Evol. 18 189–197 Occurrence Handle10.1016/S0169-5347(03)00008-9

    Article  Google Scholar 

  • J.K. McKay R.G. Latta (2002) ArticleTitleAdaptive population divergence: markers, QTL and traits Trends Ecol. Evol. 17 285–291 Occurrence Handle10.1016/S0169-5347(02)02478-3

    Article  Google Scholar 

  • J. Merilä P. Crnokrak (2001) ArticleTitleComparison of genetic differentiation at marker loci and quantitative traits J. Evol. Biol. 14 892–903 Occurrence Handle10.1046/j.1420-9101.2001.00348.x

    Article  Google Scholar 

  • D. O’Meally D.J. Colgan (2005) ArticleTitleGenetic ranking for biological conservation using information from multiple species Biol. Conserv. 122 395–407 Occurrence Handle10.1016/j.biocon.2004.08.008

    Article  Google Scholar 

  • Pannell J.R. and Dorken M.E. 2006. Colonisation as a common denominator in plant metapopulations and range expansions: effects on genetic diversity and sexual systems. Landscape Ecol. 21: 837–847.

    Google Scholar 

  • P.B. Pearman (2001) ArticleTitleConservation value of independently evolving units: sacred cow or testable hypothesis? Conserv. Biol. 15 780–783 Occurrence Handle10.1046/j.1523-1739.2001.015003780.x

    Article  Google Scholar 

  • D.E. Pearse K.A. Crandall (2004) ArticleTitleBeyond F ST: analysis of population genetic data for conservation Conserv. Genet. 5 585–602 Occurrence Handle1:CAS:528:DC%2BD2cXhtVKrtbnL Occurrence Handle10.1007/s10592-003-1863-4

    CAS  Article  Google Scholar 

  • R. Petit U.M. Csaikl S. Bordács et al. (2002) ArticleTitleChloroplast DNA variation in European white oaks. Phylogeography and patterns of diversity based on data from over 2600 populations For. Ecol. Manage. 156 5–26 Occurrence Handle10.1016/S0378-1127(01)00645-4

    Article  Google Scholar 

  • D.H. Reed R. Frankham (2001) ArticleTitleHow closely correlated are molecular and quantitative measures of genetic variation? A meta-analysis Evolution 55 1095–1103 Occurrence Handle11475045 Occurrence Handle1:STN:280:DC%2BD38%2FisFWitA%3D%3D Occurrence Handle10.1554/0014-3820(2001)055[1095:HCCAMA]2.0.CO;2

    PubMed  CAS  Article  Google Scholar 

  • D.H. Reed R. Frankham (2002) ArticleTitleCorrelation between fitness and genetic diversity Conserv. Biol. 17 230–237 Occurrence Handle10.1046/j.1523-1739.2003.01236.x

    Article  Google Scholar 

  • O. Savolainen F. Bokma R. García-Gil P. Komulainen T. Repo (2004) ArticleTitleGenetic variation in cessation of growth and frost hardiness and consequences for adaptation of Pinus sylvestris to climatic changes For. Ecol. Manage. 197 79–89 Occurrence Handle10.1016/j.foreco.2004.05.006

    Article  Google Scholar 

  • K.E.K. Schwaegerle K. Garbutt F.A. Bazzaz (1986) ArticleTitleDifferentiation among nine populations of Phlox. I. Electrophoretic and quantitative variation Evolution 40 506–517 Occurrence Handle10.2307/2408573

    Article  Google Scholar 

  • M. Slatkin (2005) ArticleTitleSeeing ghosts: the effect of unsampled populations on migration rates estimated for sampled populations Mol. Ecol. 14 67–73 Occurrence Handle15643951 Occurrence Handle10.1111/j.1365-294X.2004.02393.x

    PubMed  Article  Google Scholar 

  • P.E. Smouse V.L. Sork (2004) ArticleTitleMeasuring pollen flow in forest trees: an exposition of alternative approaches For. Ecol. Manage. 197 21–38 Occurrence Handle10.1016/j.foreco.2004.05.049

    Article  Google Scholar 

  • V.L. Sork P.E. Smouse (2006) ArticleTitleLandscape gene flow in contemporary tree populations Landscape Ecol. 21 821–836

    Google Scholar 

  • M.G. Turner R.H. Gardner R.V. O’Neill (2001) Landscape Ecology in Theory and Practice Springer New York, USA

    Google Scholar 

  • S. Vandewoestijne M. Baquette (2004) ArticleTitleDemographic versus genetic dispersal measures Popul. Ecol. 46 281–285 Occurrence Handle10.1007/s10144-004-0197-5

    Article  Google Scholar 

  • Wagner H., Werth S., Kalwij J.M., Bolli J. and Scheidegger C. 2006. Modelling the persistence and genetic structure of an epiphytic lichen. Landscape Ecol. 21: 849–865.

    Google Scholar 

  • A. Widmer C. Lexer (2001) ArticleTitleGlacial refugia: sanctuaries for allelic richness, but not for gene diversity Trends Ecol. Evol. 16 267–269 Occurrence Handle11369091 Occurrence Handle10.1016/S0169-5347(01)02163-2

    PubMed  Article  Google Scholar 

  • J.A. Wiens (1989) ArticleTitleSpatial scaling in ecology Funct. Ecol. 3 385–397 Occurrence Handle10.2307/2389612

    Article  Google Scholar 

  • S. Wright (1951) ArticleTitleThe genetical structure of populations Ann. Eugen. 15 323–354

    Google Scholar 

  • J. Wu R. Hobbs (2002) ArticleTitleKey issues and research priorities in landscape ecology: an idiosyncratic synthesis Landscape Ecol. 17 355–365 Occurrence Handle10.1023/A:1020561630963

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rolf Holderegger.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Holderegger, R., Kamm, U. & Gugerli, F. Adaptive vs. neutral genetic diversity: implications for landscape genetics. Landscape Ecol 21, 797–807 (2006). https://doi.org/10.1007/s10980-005-5245-9

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10980-005-5245-9

Keywords

  • Adaptive genetic variation
  • Heritability
  • Landscape genetics
  • Neutral genetic variation
  • Population differentiation
  • Quantitative genetics