Skip to main content

Advertisement

Log in

The Viability of Metapopulations: Individual Dispersal Behaviour Matters

  • Research article
  • Published:
Landscape Ecology Aims and scope Submit manuscript

Abstract

Metapopulation models are frequently used for analysing species–landscape interactions and their effect on structure and dynamic of populations in fragmented landscapes. They especially support a better understanding of the viability of metapopulations. In such models, the processes determining metapopulation viability are often modelled in a simple way. Animals’ dispersal between habitat fragments is mostly taken into account by using a simple dispersal function that assumes the underlying process of dispersal to be random movement. Species-specific dispersal behaviour such as a systematic search for habitat patches is likely to influence the viability of a metapopulation. Using a model for metapopulation viability analysis, we investigate whether such specific dispersal behaviour affects the predictions of ranking orders among alternative landscape configurations rated regarding their ability to carry viable metapopulations. To incorporate dispersal behaviour in the model, we use a submodel for the colonisation rates which allows different movement patterns to be considered (uncorrelated random walk, correlated random walk with various degrees of correlation, and loops). For each movement pattern, the landscape order is determined by comparing the resulting mean metapopulation lifetime Tm of different landscape configurations. Results show that landscape orders can change considerably between different movement patterns. We analyse whether and under what circumstances dispersal behaviour influences the ranking orders of landscapes. We find that the ‘competition between patches for migrants’ – i.e. the fact that dispersers immigrating into one patch are not longer available as colonisers for other patches – is an important factor driving the change in landscape ranks. The implications of our results for metapopulation modelling, planning and conservation are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • F.R. Adler B. Nuernberger (1994) ArticleTitlePersistence in patchy irregular landscapes Theor. Popul. Biol. 45 41–75

    Google Scholar 

  • W.J. Bell (1985) ArticleTitleSource of information controlling motor pattern in arthropod local search orientation J. Insect Physiol. 31 837–847

    Google Scholar 

  • M.L. Cain (1985) ArticleTitleRandom search by herbivorous insects: a simulation model Ecology 66 876–888

    Google Scholar 

  • L. Conradt E.J. Bodsworth T.J. Roper C.D. Thomas (2000) ArticleTitleNon-random dispersal in the butterfly Maniola jurtina: implications for metapopulation models Proc. Roy. Soc. Lond. B 267 1505–1510 Occurrence Handle1:STN:280:DC%2BD3MrgslChuw%3D%3D

    CAS  Google Scholar 

  • L. Conradt T.J. Roper C.D. Thomas (2001) ArticleTitleDispersal behaviour of individuals in metapopulations of two British butterflies Oikos 95 416–424 Occurrence Handle10.1034/j.1600-0706.2001.950306.x

    Article  Google Scholar 

  • L. Conradt P.A. Zollner T.J. Roper K. Frank C.D. Thomas (2003) ArticleTitleForay search: an effective systematic dispersal strategy in fragmented landscapes Am. Nat. 161 905–915 Occurrence Handle10.1086/375298 Occurrence Handle1:STN:280:DC%2BD3szislKjsg%3D%3D Occurrence Handle12858275

    Article  CAS  PubMed  Google Scholar 

  • J.N. Darroch E. Senata (1965) ArticleTitleOn quasi-stationary distributions of absorbing discrete-time finite Markov chains J. Appl. Probability 2 88–100

    Google Scholar 

  • M. Drechsler (2000) ArticleTitleA model-based decision aid for species protection under uncertainty Biol. Conserv. 94 23–30 Occurrence Handle10.1016/S0006-3207(99)00168-8

    Article  Google Scholar 

  • V. Durier C. Rivault (1999) ArticleTitlePath integration in cockroach larvaeBlattella germanica (L.) (insect : Dictyoptera): Direction and distance estimation Animal Learning & Behavior 27 108–118

    Google Scholar 

  • R.S. Etienne J.A.P. Hesterbeck (2001) ArticleTitleOn optimal size and number of reserves for metapopulation persistence J. Theoret. Biol. 203 33–50

    Google Scholar 

  • L. Fahrig (1992) ArticleTitleRelative importance of spatial and temporal scales in a patchy environment Theor. Popul. Biol. 41 300–314

    Google Scholar 

  • K. Frank (2004) ArticleTitleEcologically differentiated rules of thumb for habitat network design: lessons from a formula Biodiv. Conserv. 13 189–206

    Google Scholar 

  • Frank K., Lorek H., Koester F., Sonnenschein M., Wissel C. and Grimm V. 2002. META-X: Software for Metapopulation Viability Analysis. Springer.

  • K. Frank C. Wissel (1998) ArticleTitleSpatial aspects of metapopulation survival: from model results to rules of thumb for landscape management Landscape Ecol. 13 363–379

    Google Scholar 

  • K. Frank C. Wissel (2002) ArticleTitleA formula for the mean lifetime of metapopulations in heterogeneous landscapes Am. Nat. 159 530–552 Occurrence Handle10.1086/338991

    Article  Google Scholar 

  • Gillman M. and Hails R. 1997. An Introduction to Ecological Modelling: Putting Practice into Theory. Blackwell Science.

  • V. Grimm H. Lorek J. Finke F. Koester M. Malachinski M. Sonnenschein A. Moilanen I. Stroch A. Singer C. Wissel K. Frank (2004) ArticleTitleMETA-X: a generic software for metapopulation viability analysis Biodiv. Conserv. 13 165–188

    Google Scholar 

  • V. Grimm C. Wissel (2004) ArticleTitleThe intrinsic mean time to extinction: a unifying approach to analyze persistence and viability of populations Oikos 105 501–511 Occurrence Handle10.1111/j.0030-1299.2004.12606.x

    Article  Google Scholar 

  • N.M. Haddad (1999) ArticleTitleCorridor and distance effects on interpatch movements: a landscape experiment with butterflies Ecol. Appl. 9 612–622

    Google Scholar 

  • I. Hanski (1994) ArticleTitleA practical model of metapopulation dynamics J. Anim. Ecol. 63 151–162

    Google Scholar 

  • Hanski I. 1999. Metapopulation Ecology. Oxford University Press.

  • I. Hanski O. Ovaskainen (2000) ArticleTitleThe metapopulation capacity of a fragmented landscape Nature 404 755–758 Occurrence Handle10.1038/35008063 Occurrence Handle1:CAS:528:DC%2BD3cXjtVWntbg%3D Occurrence Handle10783887

    Article  CAS  PubMed  Google Scholar 

  • S. Hein B. Pfenning T. Hovestadt H.J. Poethke (2004) ArticleTitlePatch density, movement pattern, and realised dispersal distances in a patch-matrix landscape – a simulation study Ecol. Modell. 174 411–420 Occurrence Handle10.1016/j.ecolmodel.2003.10.005

    Article  Google Scholar 

  • Heinz S.K. 2004. Dispersal in fragmented landscapes: From individual movement behaviour to metapopulation viability. Ph.D. ThesisPhilipps-Universität Marburg, Marburg Germany 128 pp.

  • S.K. Heinz L. Conradt C. Wissel K. Frank (2005) ArticleTitleDispersal in fragmented landscapes: Deriving a practical formula for patch accessibility Landscape Ecol. 20 83–99

    Google Scholar 

  • G. Hoffmann (1983) ArticleTitleThe search behaviour of the desert isopod Hemilepistus reaumuri as compared with a systematic search Behav. Ecol. Sociobiol. 13 93–106

    Google Scholar 

  • J. Keilson (1979) Markov Chain Models – Rarity and Exponentiality (Applied Mathematical Sciences 28) Springer Verlag New York

    Google Scholar 

  • A.W. King K.A. With (2002) ArticleTitleDispersal success on spatially structured landscapes: when do spatial pattern and dispersal behavior really matter? Ecol. Modell. 147 23–39 Occurrence Handle10.1016/S0304-3800(01)00400-8

    Article  Google Scholar 

  • S.L. Lima P.A. Zollner (1996) ArticleTitleTowards a behavioral ecology of ecological landscapes Trends Ecol. Evol. 11 131–135 Occurrence Handle10.1016/0169-5347(96)81094-9

    Article  Google Scholar 

  • D.W. Lindenmayer H.P. Possingham (1996) ArticleTitleRanking conservation and timber management options for Leadbeater's possum in southeastern Australia using Population Viability Analysis Conserv. Biol. 10 1–18 Occurrence Handle10.1046/j.1523-1739.1996.10010235.x

    Article  Google Scholar 

  • Merriam G. 1991. Corridors and connectivity: animal populations in heterogeneous environments. In: Saunders D.A. and Hobbs R.J. (eds), Nature Conservation 2: The Role of Corridors. Surrey Beatty & Sons, pp.133–142.

  • J.M. Morales S.P. Ellner (2002) ArticleTitleScaling up animal movements in heterogeneous landscapes: the importance of behavior Ecology 83 2240–2247

    Google Scholar 

  • M. Müller R. Wehner (1994) ArticleTitleThe hidden spiral-systematic search and path integration in desert ants, Cataglyphis fortis J. Comp. Physiol. A 175 525–530 Occurrence Handle10.1007/BF00199474

    Article  Google Scholar 

  • O. Ovaskainen (2002) ArticleTitleThe effective size of a metapopulation living in a heterogeneous patch network Am. Nat. 160 612–628 Occurrence Handle10.1086/342818

    Article  Google Scholar 

  • P.K. Pollett (1997) Limiting conditional distributions for metapopulation models A.D. McDonal L. McAleer (Eds) Proc. Int. Congr. on Modeling and Simulation, Vol. 2 Modeling and Simulation Society of Australia HobartAustralia 807–812

    Google Scholar 

  • H.P. Possingham I.R. Ball S. Andelman (2000) Mathematical models for reserve design S. Ferson M. Burgman (Eds) Quantitative Methods for Conservation Biology Springer New York 291–306

    Google Scholar 

  • B.D. Roitberg M. Mangel (1997) ArticleTitleIndividuals on the landscape: behavior can mitigate landscape differences among habitats Oikos 80 234–240

    Google Scholar 

  • Verboom J., Metz J.A.J. and Meelis E. 1993. Metapopulation models for impact assessment of fragmentation. In: Vos C.C. and Opdam P. (eds), Landscape Ecology of a Stressed Environment. Chapman & Hall, pp. 172–192.

  • C.C. Vos J. Verboom P.F.M. Opdam C.J.F. Ter Braak (2001) ArticleTitleToward ecologically scaled landscape indices Am. Nat. 183 24–41

    Google Scholar 

  • J.L. Weaver P.C. Paquet L.F. Ruggiero (1996) ArticleTitleResilience and conservation of large carnivores in the Rocky Mountains Conserv. Biol. 10 964–976 Occurrence Handle10.1046/j.1523-1739.1996.10040964.x

    Article  Google Scholar 

  • C. Wissel S. Stöcker (1991) ArticleTitleExtinction of populations by random influences Theor. Popul. Biol. 39 315–328

    Google Scholar 

  • P.A. Zollner S.L. Lima (1997) ArticleTitleLandscape-level perceptual abilities in white-footed mice: perceptual range and the detection of forested habitat Oikos 80 51–60

    Google Scholar 

  • P.A. Zollner S.L. Lima (1999) ArticleTitleSearch strategies for landscape-level interpatch movement Ecology 80 1019–1030

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simone K. Heinz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heinz, S.K., Wissel, C. & Frank, K. The Viability of Metapopulations: Individual Dispersal Behaviour Matters. Landscape Ecol 21, 77–89 (2006). https://doi.org/10.1007/s10980-005-0148-3

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10980-005-0148-3

Keywords

Navigation