Landscape Ecology

, Volume 20, Issue 2, pp 137–147 | Cite as

A simple method for estimating potential relative radiation (PRR) for landscape-scale vegetation analysis

  • Kenneth B. PierceJr.
  • Todd Lookingbill
  • Dean Urban
Research article


Radiation is one of the primary influences on vegetation composition and spatial pattern. Topographic orientation is often used as a proxy for relative radiation load due to its effects on evaporative demand and local temperature. Common methods for incorporating this information (i.e., site measures of slope and aspect) fail to include daily or annual changes in solar orientation and shading effects from local topography. As a result, these static measures do not incorporate the level of spatial and temporal heterogeneity required to examine vegetation patterns at the landscape level. We developed a widely applicable method for estimating potential relative radiation (PRR) using digital elevation data and a widely used geographic information system (Arc/Info). We found significant differences among four increasingly comprehensive radiation proxies. Our GIS-based proxy compared well with estimates from more data-intensive and computationally rigorous radiation models. We note that several recent studies have not found strong correlations between vegetation pattern and landscape-scale differences in radiation. We suggest that these findings may be due to the use of proxies that were not accurately capturing variability in radiation, and we recommend PRR or similar measures for use in future vegetation analyses.


Aspect DEM GIS Solar insolation Species-environment interactions Topographic effects Vegetation distribution 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Austin, M.P., Nicholls, A.O., Margules, C.R. 1990Measurement of the Realized Qualitative Niche: Environmental Niches of Five Eucalyptus SpeciesEcological Monographs60161177Google Scholar
  2. Band, L.E., Peterson, D.L., Running, S.W., Coughlan, J., Lammers, R., Dungan, J., Nemani, R. 1991Forest ecosystem process at the watershed scale: basis for distributed simulationEcological Modelling56171196Google Scholar
  3. Beers, T.W., Press, P.E., Wensel, L.C. 1966Aspect transformation in site productivity researchJournal of Forestry64691692Google Scholar
  4. Bolstad, P., Swank, W., Vose, J. 1998Predicting southern Appalachian overstory vegetation with digital terrain dataLandscape Ecology13695707Google Scholar
  5. Bonan, G.B. 1988Environmental processes and vegetation patterns in boreal forestsPh.D. ThesisUniversity of VirginiaCharlottesvilleVirginiaUSAGoogle Scholar
  6. Brown, D.G. 1994Predicting vegetation types at treeline using topography and biophysical disturbance variablesJournal of Vegetation Science5641656Google Scholar
  7. Bunn, A.G., Lawrence, R.L., Bellante, G.J., Waggoner, L.A., Graumlich, L.J. 2003Spatial variation in distribution and growth patterns of old growth strip-bark pinesArctic, Antarctic and Alpine Research35323330Google Scholar
  8. Callaway, R.M., Clebsch, E.E.C., White, P.S. 1998A Multivariate analysis of forest communities in the western Great Smoky Mountains national parkAmerican Midland Naturalist118107118Google Scholar
  9. Campbell, G.S., Norman, J.M. 1998An Introduction to Environmental BiophysicsSpringerNew Jersey, USAGoogle Scholar
  10. Chen, J., Saunders, S.C., Crow, T.R., Naiman, R.J., Brosofske, K.D., Mroz, G.D., Brookshire, B.L., Franklin, J.F. 1999Microclimate in forest ecosystem and landscape ecologyBioscience4928897Google Scholar
  11. Clinton, B.D., Boring, L.R., Swank, W.T. 1994Regeneration patterns in canopy gaps of mixed-oak forests of the Southern Appalachians: Influences of topographic position and evergreen understoryAmerican Midland Naturalist132308319Google Scholar
  12. Daly, C., Neilson, R.P., Phillips, D.L. 1994A statistical-topographic model for mapping climatological precipitation over mountainous terrainJournal of Applied Meteorology33140158Google Scholar
  13. Davis., F.W., Goetz, S. 1990Modeling vegetation pattern using digital terrain dataLandscape Ecology46980Google Scholar
  14. Day, F.P., Monk, C.D. 1974Vegetation patterns on a southern Appalachian watershedEcology5510641074Google Scholar
  15. Donnegan., J.A., Rebertus, A.J. 1999Rates and mechanisms of subalpine forest succession along an environmental gradientEcology8013701384Google Scholar
  16. Dozier, J., Frew, J. 1990Rapid calculation of terrain parameters for radiation modeling from digital elevation dataIEEE Transaction on Geoscience and Remote Sensing28963969Google Scholar
  17. Dubayah, R.C. 1994Modeling a solar radiation topoclimatology for the Rio Grande River BasinJournal of Vegetation Science5627640Google Scholar
  18. Dubayah, R., Rich, P.M. 1995Topographic solar radiation models in GISInternational Journal of Geographical Information Systems9405419Google Scholar
  19. Dyrness, C.T., Franklin, J.F., Moir, W.H. 1974A preliminary classification of forest communities in the central portion of the Western Cascades in OregonForestry Sciences LaboratoryUSDA Forest ServiceCorvallis, Oregon, USAGoogle Scholar
  20. ESRI, ARC/Info 71994Environmental SystemsResearch Institute IncRedlands, CAUSAGoogle Scholar
  21. Frank E.C., Lee R. 1966. Potential solar beam irradiation on slopes: tables for 30 to 50 latitude. Rocky Mountain Forest Range Experiemental Station, Fort Collins, Colorado. Forest Service Research Paper RM-18 U.S.D.A. Forest Service.Google Scholar
  22. Franklin, J. 1998Predicting the distribution of shrub species in southern California from climate and terrain-derived variablesJournal of Vegetation Science9733748Google Scholar
  23. Franklin, J.F., C.T., Dyrness. 1988Natural vegetation of Oregon and WashingtonOregon State University PressCorvallis, Oregon, USAGoogle Scholar
  24. Franklin, J., McCullough, P., Gray, C. 2000

    Terrain variables used for predictive mapping of vegetation communities in Southern California.

    Wilson, J.P.Gallant, J.C. eds. Terrain Analysis: Principle and ApplicationsJohn Wiley and SonsNew York, New York USA331354
    Google Scholar
  25. Fu, P., Rich, P.M. 1999Design and implementation of the Solar Analyst: an ArcView extension for modeling solar radiation at landscape scalesProceedings of the 19th Annual ESRI User ConferenceSan DiegoUSAAvailable from Scholar
  26. Geiger, R.J. 1965The Climate Near the GroundHarvard University PressCambridgeMassachusetts, USAGoogle Scholar
  27. Greenland D. 1996. Potential solar radiation at the H J. Andrews experimental forest. Pacific Northwest Research Station, EugeneOregon, Interim Report PNW 93-0477, U.S.D.A. Forest Service.Google Scholar
  28. Grier, C.C., Logan, R.S. 1977Old-growth Pseudotsuga menziesi communities of a western Oregon watershed: biomass distribution and production budgetsEcological Monographs47373400Google Scholar
  29. Guisan, A., Theurillat, J., Kienast, F. 1998Predicting the potential distribution of plant species in an alpine environmentJournal of Vegetation Science96574Google Scholar
  30. Kessell, S.R. 1979Gradient Modeling: Resource and Fire ManagementSpringer-VerlagNew York, New York USAGoogle Scholar
  31. Klein, S.A. 1977Calculation of monthly average insolation on tilted surfacesSolar Energy19325329Google Scholar
  32. Lookingbill, T., Urban, D. 2003Spatial estimation of air temperature differences for landscape-scale studies in montane environmentsAgricultural and Forest Meteorology114141151Google Scholar
  33. Lookingbill, T., Urban, D. 2004An empirical approach towards improved spatial estimates of soil moisture for vegetation analysisLandscape Ecology19417433Google Scholar
  34. Mackey, B.G., Mullen, I.C., Baldwin, K.A., Gallant, J.C., Sims, R.A., McKenney, D.W. 2000

    Towards a spatial model of boreal forest ecosystems: The role of digital terrain analysis.

    Wilson, J.PGallant, J.C. eds. Terrain Analysis: Principle and ApplicationsJohn Wiley and SonsNew York, New York USA391427
    Google Scholar
  35. McCay, D.H., Abrams, M.D., DeMeo, T.E. 1997Gradient analysis of secondary forests of eastern West VirginiaJournal of the Torrey Botanical Society124160173Google Scholar
  36. McKenney, D.W., Mackey, B.G., Zavitz, B.L. 1999Calibration and sensitivity analysis of a spatially-distributed solar radiation modelInternational Journal of Geographical Information Science134965Google Scholar
  37. Miller, C., Urban, D.L. 1999A model of surface fireclimate and forest pattern in the Sierra NevadaCaliforniaEcological Modelling114113135Google Scholar
  38. Nikolov, N.T., Zeller, K.F. 1992A solar radiation algorithm for ecosystem dynamic modelsEcological Modelling61149168Google Scholar
  39. Park, A.D. 2001Environmental influences on post-harvest natural regeneration in mexican pine-oak forestsForest Ecology and Management144213228Google Scholar
  40. Parker, A.J. 1995Comparative gradient structure and forest cover types in Lassen Volcanic and Yosemite National Parks, CaliforniaBulletin of the Torrey Botanical Society1225868Google Scholar
  41. Raven, P.H., Evert, R.F., Eichhorn, S.E. 1992Biology of PlantsWorth PublishersNew York, New York USAGoogle Scholar
  42. Running, S.W., Nemani, R.R., Hungerford, R.D. 1987Extrapolation of synoptic meteorological data in mountainous terrain and its use for simulating forest evapotranspiration and photosynthesisCanadian Journal of Forest Research17472483Google Scholar
  43. Smith, J. 2002Mapping the Thermal Climate of the HJ. Andrews Experimental ForestOregon. M.S. Thesis, Oregon State University, Corvallis, Oregon, USAGoogle Scholar
  44. Stephenson, N.L. 1998Actual evapotranspiration and deficit: biologically meaningful correlates of vegetation distribution across spatial scalesJournal of Biogeography25855870Google Scholar
  45. Stephenson N.L., Parsons D.J. 1993. A research program for predicting the effects of climate change on the Sierra Nevada. Viers S.D. Jr., Stohlgren T.J. and Schonewal-Cox C. (eds), Proceedings of the Fourth Conference on Research in California’s National Parks. USDI Park Service Transactions and Proceedings Series 9, Denver Colorado pp. 93–109.Google Scholar
  46. Swanson, F.J., Kratz, T.K., Caine, N., Woodmansee, R.G. 1988Landform effects on ecosystem patterns and processesBioscience389298Google Scholar
  47. Thornton, P.E., Running, S.W., White, M.A. 1997Generating surfaces of daily meteorological variables over large regions of complex terrainJournal of Hydrology190214251Google Scholar
  48. Urban, D.L., Miller, C., Halpin, P.N., Stephenson, N.L. 2000Forest gradient response in Sierran landscapes: the physical templateLandscape Ecology15603620Google Scholar
  49. Vankat, J.L., Major, J. 1978Vegetation changes in Sequoia National Park, CaliforniaJournal of Biogeography5377402Google Scholar
  50. Wilson, J.P., Gallant, J.C. 2000

    Secondary topographic attributes.

    Wilson, J.P.Gallant, J.C. eds. Terrain Analysis: Principle and ApplicationsJohn Wiley and SonsNew York, New York USA97132
    Google Scholar
  51. Whittaker, R.H. 1956Vegetation of the Great Smoky MountainsEcological Monographs.26180Google Scholar
  52. Whittaker, R.H. 1960Vegetation of the Siskiyou Mountains, Oregon and CaliforniaEcological Monographs30279338Google Scholar
  53. Yeakley, J.A., Swank, W.T., Swift, L.W., Hornberger, G.M., Shugart, H.H. 1998Soil moisture gradients and controls on a southern Appalachian hillslope from drought through rechargeHydrology and Earth System Sciences24149Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Kenneth B. PierceJr.
    • 1
  • Todd Lookingbill
    • 1
  • Dean Urban
    • 1
  1. 1.Nicholas School of the Environment and Earth SciencesDuke UniversityDurhamUSA

Personalised recommendations