Kinetics and Catalysis

, Volume 46, Issue 5, pp 729–735 | Cite as

Reactivity of La1 − xSr x FeO3 − y (x = 0–1) Perovskites in Oxidation Reactions

  • L. A. Isupova
  • I. S. Yakovleva
  • G. M. Alikina
  • V. A. Rogov
  • V. A. Sadykov


Oxygen species and their reactivity in La1 − xSr x FeO3 − y perovskites prepared using mechanochemical activation were studied by temperature-programmed reduction (TPR) with hydrogen and methane. The experimental data were compared with data on the catalytic activity in oxidation reactions. It was found that the rates of CO and methane oxidation on the perovskites in the presence of gas-phase oxygen correlated (k = 0.8) with the amount of reactive surface oxygen species that were removed by TPR with hydrogen up to 250°C. Maximum amounts of this oxygen species were released from two-phase samples (x = 0.3, 0.4, and 0.8), which exhibited an enhanced activity in the reaction of CO oxidation. In the absence of oxygen in the gas phase, methane is oxidized by lattice oxygen. In this case, the process activity and selectivity depend on the mobility of lattice oxygen, which is determined by the temperature, the degree of substitution, the degree of reduction, and the microstructure of the oxide. Thus, the high mobility of oxygen, which is reached at high concentrations of point defects or interphase/domain boundaries, is of importance for the process of deep oxidation. However, the process of partial oxidation occurs in single-phase samples at low degrees of substitution (x = 0.1–0.2).


Methane Catalytic Activity Perovskite Oxidation Reaction Process Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Seiyama, T., Catal. Rev.—Sci. Eng., 1991, vol. 34, no.4, p. 281.Google Scholar
  2. 2.
    Yamazoe, N. and Teraoka, V., Catal. Today, 1990, vol. 8, no.2, p. 175.CrossRefGoogle Scholar
  3. 3.
    Tejuca, L.G., Fierro, J.L.G., and Tascon, J.M.D., Adv. Catal., 1989, vol. 36, p. 237.Google Scholar
  4. 4.
    Baran, E.J., Catal. Today, 1990, vol. 8, p. 133.CrossRefGoogle Scholar
  5. 5.
    Popovskii, V.V., Teoreticheskie problemy kataliza (Theoretical Problems of Catalysis), Novosibirsk: Inst. Kataliza, 1977.Google Scholar
  6. 6.
    Boreskov, G.K., Geterogennyi kataliz (Heterogeneous Catalysis), Moscow: Nauka, 1988.Google Scholar
  7. 7.
    Sadykov, V.A., Tikhov, S.F., Tsybulya, S.V., Kryukova, G.N., Veniaminov, S.A., Kolomiichuk, V.N., Bulgakov, N.N., Isupova, L.A., Paukshtis, E.A., Zaikovskii, V.I., Kustova, G.N., and Burgina, E.B., Stud. Surf. Sci. Catal., 1997, vol. 110, p. 1155.Google Scholar
  8. 8.
    Isupova, L.A., Yakovleva, I.S., Rogov, V.V., Alikina, G.M., and Sadykov, V.A., Kinet. Katal., 2004, vol. 45, no.3.Google Scholar
  9. 9.
    Ciambelli, P., Cimino, S., Lisi, L., Faticanti, M., Minelli, G., Pettiti, I., and Porta, P., Appl. Catal., B, 2001, vol. 33, p. 193.Google Scholar
  10. 10.
    Li, R., Ma, J., Zhou, X., and Su, Zh., React. Kinet. Catal. Lett., 2000, vol. 70, no.2, p. 362.Google Scholar
  11. 11.
    Yue Wu, Tao Yu, and Bo-Sheng Dou, J. Catal., 1989, vol. 120, p. 88.CrossRefGoogle Scholar
  12. 12.
    Yakovleva, I.S., Isupova, L.A., Tsybulya, S.V., Chernysh, A.V., Boldyreva, N.N., Alikina, G.M., and Sadykov, V.A., J. Mater. Sci., 2004, vol. 39, p. 5517.CrossRefGoogle Scholar
  13. 13.
    Tsybulya, S.V., Kryukova, G.N., Isupova, L.A., Shmakov, A.I., Cherepanova, S.V., and Sadykov, V.A., Strukt. Khim., 1998, vol. 31, no.1, p. 92.Google Scholar
  14. 14.
    Petrov, A.N., Kononchuk, J.F., Andreev, A.V., Cherepanov, V.A., and Kofstad, P., Solid State Ionics, 1995, vol. 80, p. 189.CrossRefGoogle Scholar
  15. 15.
    Isupova, L.A., Budneva, A.A., Paukshtis, E.A., and Sadykov, V.A., J. Mol. Catal. A, 2000, vol. 158, p. 275.Google Scholar
  16. 16.
    Dann, S.E., Currie, D.B., Weller, M.T., Thomas, M.F., and Al-Rawwas, A.D., J. Solid State Chem., 1994, vol. 109, p. 134.CrossRefGoogle Scholar
  17. 17.
    Anderson, H.U, Zhou Xiao-Dong, and Dogan, F., Mixed Ionic Electronic Conducting Rerovskites for Advanced Energy Systems, Orlovskaya, N. and Browning, N., Eds., Dordrecht: Kluwer, 2004, p. 303.Google Scholar
  18. 18.
    Li Ranjia, Yu Changchun, and Shen Shikong, J. Nat. Gas Chem., 2002, vol. 11, p. 137.Google Scholar

Copyright information

© MAIK "Nauka/Interperiodica" 2005

Authors and Affiliations

  • L. A. Isupova
    • 1
  • I. S. Yakovleva
    • 1
  • G. M. Alikina
    • 1
  • V. A. Rogov
    • 1
  • V. A. Sadykov
    • 1
  1. 1.Boreskov Institute of Catalysis, Siberian DivisionRussian Academy of SciencesNovosibirskRussia

Personalised recommendations