Kinetics and Catalysis

, Volume 46, Issue 5, pp 620–633 | Cite as

Structure, Texture, and Acid-Base Properties of Alkaline Earth Oxides, Rare Earth Oxides, and Binary Oxide Systems

  • A. S. Ivanova


The effect of synthesis conditions on the formation of the phase composition, dispersity, pore structure, and acid-base properties of alkaline earth oxides, rare earth oxides, and the Mg-M-O (M = Y, La, or Ce) and Y(La)-M-O (M = Ca, Sr, or Ba) binary systems was studied. It was found that the nature of the system was responsible for the character of phase transformations: the Mg-M-O samples were a mixture of either MgO with Y2O3 or MgO with a solid solution based on rare earth oxides (LaMg)2O3 or (CeMg)O2); the Y(La)-M-O samples (M = Ca, Sr, or Ba) contained the M2Y2O5, MY2O4, and MLa2O4 compounds, which differ in chemical stability, in addition to La2O3 and Y2O3 phases. According to XPS data, the M/Mg atomic ratios were much higher than the bulk values; this is indicative of an enrichment of the surface of samples in the second component. An increase in the concentration of M2O3 from 5 to 25 mol % resulted in a decrease in the Ssp of the Mg-M-O samples from 220 ± 10 to 110 ± 10 m2/g; the Ssp of samples calcined at 750°C was lower by a factor of ∼1.5–2. The Ssp of the Y(La)-M-O samples was higher than the Ssp of individual La2O3 and Y2O3. The samples were characterized by a biporous texture. The concentrations and strength distributions of surface OH groups, Lewis acid sites, and Lewis base sites depend on the nature and concentration of rare earth elements in the binary samples. The activity of the Mg-M-O samples in the oxidative dehydrogenation reaction of propionitrile correlated with the acid-base surface sites. Among the Ru/Y(La)-M-O catalysts for ammonia synthesis, Ru/Y-Ba-O was the most active; this catalyst provided a higher yield of NH3 at 250–300°C, as compared with catalysts prepared with the use of other supports (Sibunit, KVU-1, and C/MgO).


Y2O3 La2O3 Lewis Acid Site Rare Earth Oxide Oxidative Dehydrogenation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Keller, G.E. and Bhasin, M.M., J. Catal., 1982, vol. 73, p. 9.CrossRefGoogle Scholar
  2. 2.
    Otsuka, K., Jinno, K., and Morikawa, A., J. Catal., 1986, vol. 100, p. 353.CrossRefGoogle Scholar
  3. 3.
    Sofranko, J.A., Leonard, J.J., and Jones, C.A., J. Catal., 1987, vol. 103, p. 302.CrossRefGoogle Scholar
  4. 4.
    Matsuda, N., Ohyachi, K., and Matsuura, I., Chem. Express, 1990, vol. 5, no.8, p. 533.Google Scholar
  5. 5.
    Choudhary, V.R. and Rane, V.H., J. Catal., 1991, vol. 130, no.2, p. 411.CrossRefGoogle Scholar
  6. 6.
    Krylov, O.V., Usp. Khim., 1992, vol. 61, p. 1550.Google Scholar
  7. 7.
    Ivanova, A.S., Moroz, E.M., and Litvak, G.S., React. Kinet. Catal. Lett., 1998, vol. 65, no.1, p. 169.Google Scholar
  8. 8.
    Ivanova, A.S., Paukshtis, E.A., Sobyanin, V.A., and Galvita, V.V., React. Kinet. Catal. Lett., 1998, vol. 64, no.2, p. 337.Google Scholar
  9. 9.
    Yu, L., Li, W., Ducarme, V., Mirodatos, C., and Martin, G.A., Appl. Catal., A, 1998, vol. 175, p. 173.Google Scholar
  10. 10.
    Valenzuela, R.Y., Bueno, G., Solbes, A., Sabifia, F., Martinez, E., and Corberan, V.C., Top. Catal., 2001, vol. 15, nos.2–4, p. 181.Google Scholar
  11. 11.
    Jackson, S.D., Kelly, G.J., Hamilton, Ch.A., and Davies, L., React. Kinet. Catal. Lett., 2003, vol. 79, no.2, p. 213.CrossRefGoogle Scholar
  12. 12.
    Szollosi, G. and Bartok, M., J. Mol. Catal. A, 1999, vol. 148, nos.1–2, p. 265.Google Scholar
  13. 13.
    Topsoe, H., Dumesic, J.A., Derouane, E.G., Clausen, B.S., Morup, S., Villadsen, J., and Topsoe, N., Stud. Surf. Sci. Catal., 1979, vol. 3, p. 365.Google Scholar
  14. 14.
    Shen, J., Guang, B., Tu, M., and Chen, Y., Catal. Today, 1996, vol. 30, nos.1–3, p. 77.Google Scholar
  15. 15.
    Gallegos, N.G., Alvarez, A.M., Cagnoli, M.Y., Bengoa, J.F., Marchetti, S.G., Mercador, R.C., and Veramian, A.A., J. Catal., 1996, vol. 161, p. 132.CrossRefGoogle Scholar
  16. 16.
    Kock, A.J.H.M., Fortuin, H.M., and Geus, J.W., J. Catal., 1985, vol. 96, p. 261.Google Scholar
  17. 17.
    Stobbe, D.E., van Buren, F.R., Stobbe-Kreemers, A.W., van Dillen, A.J., and Geus, J.W., J. Chem. Soc., Faraday Trans., 1991, vol. 87, p. 1631.Google Scholar
  18. 18.
    Ivanova, A.S., Bobrova, I.I., Moroz, E.M., Gavrilov, V.Yu., Kalinkin, A.S., and Sobyanin, V.A., Kinet. Katal., 1993, vol. 34, no.4, p. 758.Google Scholar
  19. 19.
    Tang, S., Lin, J., and Tan, K.L., Catal. Lett., 1998, vol. 51, p. 169.CrossRefGoogle Scholar
  20. 20.
    Boudart, M., Delbouille, A., Dumesic, J.A., Khammouma, S., and Topsoe, H., J. Catal., 1975, vol. 37, p. 486.CrossRefGoogle Scholar
  21. 21.
    Murata, S. and Aika, K., J. Catal., 1992, vol. 136, no.1, p. 110.Google Scholar
  22. 22.
    Khaja, M.S., Indian J. Chem., Sect. A, 1993, vol. 32, no.4, p. 383.Google Scholar
  23. 23.
    Shur, V.B. and Yunusov, S.M., Izv. Akad. Nauk, Ser. Khim., 1998, no. 5, p. 796.Google Scholar
  24. 24.
    Yunusov, S.M., Moroz, B.L., Ivanova, A.S., Likholobov, V.A., and Shur, V.B., J. Mol. Catal. A, 1998, vol. 132, no.3, p. 263.Google Scholar
  25. 25.
    Aika, K. and Tamary, K., Ammonia: Catalysis and Manufacture, Nielsen, A., Ed., Berlin: Springer, 1995, p. 104.Google Scholar
  26. 26.
    Aika, K., Takano, T., and Murata, S., J. Catal., 1992, vol. 136, no.1, p. 126.CrossRefGoogle Scholar
  27. 27.
    Murata, S. and Aika, K., J. Catal., 1992, vol. 136, no.1, p. 118.Google Scholar
  28. 28.
    Kadowaki, S. and Aika, K., J. Catal., 1996, vol. 161, no.1, p. 178.CrossRefGoogle Scholar
  29. 29.
    Niwa, Y. and Aika, K., J. Catal., 1996, vol. 162, no.1, p. 138.CrossRefGoogle Scholar
  30. 30.
    Krylov, O.V., Problemy kinetiki i kataliza (Problems of Kinetics and Catalysis), Krylov, O.V., Ed., 1973, vol. 15, p. 85.Google Scholar
  31. 31.
    Topchieva, K.V., Loginov, A.Yu., Kreisberg, V.A., and Kostikov, S.V., Sovremennye problemy fizicheskoi khimii (Modern Problems of Physical Chemistry), 1975, vol. 8, p. 268.Google Scholar
  32. 32.
    Butyagin, P.Yu., Usp. Khim., 1984, vol. 53, no.11, p. 1769.Google Scholar
  33. 33.
    Stone, F.S. and Zecchina, A., Proceedings of VI International Congress of Catalysis, 1976, Preprint A-8.Google Scholar
  34. 34.
    Tench, A.J., J. Chem. Soc., Faraday Trans. 1, 1983, vol. 79, no.8, p. 1881.Google Scholar
  35. 35.
    Tanaka, K. and Ozaki, A., J. Catal., 1967, vol. 8, no.1, p. 1.CrossRefGoogle Scholar
  36. 36.
    Brown, M.E., Dollimore, D., and Galwey, A.K., Reactions in the Solid State, Amsterdam: Elsevier, 1980.Google Scholar
  37. 37.
    L'vov, B.V. and Ugolkov, V.L., Thermochim. Acta, 2004, vol. 409, p. 13.CrossRefGoogle Scholar
  38. 38.
    Dzis'ko, V.A., Tarasova, D.V., and Karnaukhov, A.P., Fiziko-khimicheskie osnovy sinteza okisnykh katalizatorov (Physicochemical Principles of the Synthesis of Oxide Catalysts), Novosibirsk: Nauka, 1978.Google Scholar
  39. 39.
    Dzis'ko, V.A., Ivanova, A.S., Plyasova, L.M., and Ketchik, S.V., Izv. Akad. Nauk SSSR, Ser. Khim., 1978, no. 5, p. 983.Google Scholar
  40. 40.
    Ivanova, A.S., Dzis'ko, V.A., and Ketchik, S.V., Zh. Neorg. Khim., 1980, vol. 25, no.9, p. 2330.Google Scholar
  41. 41.
    Ivanova, A.S., Pugach, M.M., Moroz, E.M., Litvak, G.S., Kryukova, G.S., Mastikhin, V.M., and Krivoruchko, O.P., Izv. Akad. Nauk SSSR, Ser. Khim., 1989, no. 10, p. 2169.Google Scholar
  42. 42.
    Ivanova, A.S., Moroz, B.L., Litvak, G.S., and Okkel', L.G., Neorg. Mater., 1998, vol. 34, no.4, p. 432.Google Scholar
  43. 43.
    Jost, H., Braun, M., and Carius, Ch., Solid State Ionics, 1997, vols. 101–103, p. 221.Google Scholar
  44. 44.
    Thoms, H., Epple, M., Viebrock, H., and Reller, A., J. Mater. Chem., 1995, vol. 5, p. 589.CrossRefGoogle Scholar
  45. 45.
    Thoms, H., Epple, M., and Reller, A., Solid State Ionics, 1997, vols. 101–103, p. 79.Google Scholar
  46. 46.
    Hartman, M., Trinke, O., Svoboda, K., and Kocurek, J., Chem. Eng. Sci., 1994, vol. 49, no.8, p. 1209.Google Scholar
  47. 47.
    Aramendia, M.A., Borau, V., Jimenez, C., Marinas, J.M., Ruiz, J.R., and Urbano, F.J., Appl. Catal., A, 2003, vol. 244, p. 207.Google Scholar
  48. 48.
    Bradley, D.C., Chem. Rev., 1989, vol. 89, p. 1317.CrossRefGoogle Scholar
  49. 49.
    Caulton, K.G. and Hubert-Pfaltzgraf, L.G., Chem. Rev., 1990, vol. 90, p. 969.CrossRefGoogle Scholar
  50. 50.
    Utamapanya, S., Klabunde, K.J., and Schlup, J.R., Chem. Mater., 1991, vol. 3, p. 175.CrossRefGoogle Scholar
  51. 51.
    Diao, Y., Walawender, W.P., Sorensen, Ch.M., Klabunde, K.J., and Ricker, T., Chem. Mater., 2002, vol. 14, p. 362.CrossRefGoogle Scholar
  52. 52.
    Men', A.N., Vorob'ev, Yu.P., and Chufarov, G.I., Fizikokhimicheskie svoistva nestekhiometricheskikh oksidov (Physicochemical Properties of Nonstoichiometric Oxides), Leningrad: Khimiya, 1973.Google Scholar
  53. 53.
    Kus, S., Otremba, M., Torz, A., and Taniewski, M., Appl. Catal., A, 2002, vol. 230, nos.1–2, p. 263.Google Scholar
  54. 54.
    Anderson, P.J. and Morgan, P.L., Trans. Faraday Soc., 1964, vol. 60, p. 930.CrossRefGoogle Scholar
  55. 55.
    Klevtsov, P.V. and Sheina, L.P., Neorg. Mater., 1965, vol. 1, no.12, p. 2219.Google Scholar
  56. 56.
    Ivanova, A.S., Kalyuzhnaya, E.S., Litvak, G.S., Moroz, E.M., Yunusov, S.M., Lenenko, V.S., Moroz, B.L., Shur, V.B., and Likholobov, V.A., Kinet. Katal., 2004, vol. 45, no.4, p. 574.Google Scholar
  57. 57.
    Ivanova, A.S., Moroz, E.M., and Litvak, G.S., Kinet. Katal., 1992, vol. 33, nos.5–6, p. 1208.Google Scholar
  58. 58.
    Orlovskii, V.P. and Chudinova, N.N., Soedineniya redkozemel'nykh elementov (Compounds of Rare-Earth Elements), Moscow: Nauka, 1984.Google Scholar
  59. 59.
    ASTM Diffraction Data Cards and Alphabetical and Grouped Numerical Index of X-ray Diffraction Data, Philadelphia: ASTM, 1967.Google Scholar
  60. 60.
    Serebrennikov, V.V. and Alekseenko, L.A., Kurs khimii redkozemel'nykh elementov (Chemistry of Rare-Earth Elements), Tomsk: Tomsk. Gos. Univ., 1963.Google Scholar
  61. 61.
    Reznitskii, L.A., Zh. Fiz. Khim., 1990, vol. 64, no.2, p. 561.Google Scholar
  62. 62.
    Leonov, A.I., Vysokotemperaturnaya khimiya kislorodnykh soedinenii tseriya (High-Temperature Chemistry of Oxygen Compounds of Cerium), Leningrad: Nauka, 1970.Google Scholar
  63. 63.
    JCPDS File, 28-271.Google Scholar
  64. 64.
    Spravochnik khimika (Chemist's Handbook), Nikol'skii, B.P., Ed., Leningrad: Khimiya, 1971, p. 381.Google Scholar
  65. 65.
    Voronkov, A.A., Shumyatskaya, N.G., and Pyatenko, Yu.A., Kristallokhimiya mineralov tsirkoniya i ikh iskusstvennye analogi (Zirconium Minerals: Crystal Chemistry and Artificial Analogues), Moscow: Nauka, 1978.Google Scholar
  66. 66.
    Zachariasen, W., Z. Phys. Chem., 1926, vol. 123, p. 134.Google Scholar
  67. 67.
    Bevan, D.J.M., J. Inorg. Nucl. Chem., 1955, vol. 1, nos.1–2, p. 49.Google Scholar
  68. 68.
    Grzybek, T. and Baerns, M., J. Catal., 1991, vol. 129, p. 106.CrossRefGoogle Scholar
  69. 69.
    Mariscal, R., Soria, J., Pena, M.A., and Fierro, J.L.G., J. Catal., 1994, vol. 147, p. 535.CrossRefGoogle Scholar
  70. 70.
    Mariscal, R., Pena, M.A., and Fierro, J.L.G., Appl. Catal., A, 1995, vol. 131, p. 243.Google Scholar
  71. 71.
    Martin, C., Martin, I., and Rives, V., J. Mol. Catal., 1992, vol. 73, p. 51.Google Scholar
  72. 72.
    Szollosi, G. and Bartok, M., J. Mol. Struct., 1999, vol. 482, p. 13.Google Scholar
  73. 73.
    Paukshtis, E.A., Infrakrasnaya spektroskopiya v geterogennom kislotno-osnovnom katalize (Infrared Spectroscopy in Heterogeneous Acid-Base Catalysis), Novosibirsk: Nauka, 1992.Google Scholar
  74. 74.
    Yu, L., Li, W., Ducarme, V., Mirodatos, C., and Martin, G.A., Appl. Catal., A, 1998, vol. 175, p. 173.Google Scholar
  75. 75.
    Yunusov, S.M., Kalyuzhnaya, E.S., Mahapatra, H., Puri, V.K., Likholobov, V.A., and Shur, V.B., J. Mol. Catal. A, 1999, vol. 139, nos.2–3, p. 219.Google Scholar
  76. 76.
    Yunusov, S.M., Likholobov, V.A., and Shur, V.B., Appl. Catal., A, 1997, vol. 158, nos.1–2, p. L35.Google Scholar

Copyright information

© MAIK "Nauka/Interperiodica" 2005

Authors and Affiliations

  • A. S. Ivanova
    • 1
  1. 1.Boreskov Institute of Catalysis, Siberian DivisionRussian Academy of SciencesNovosibirskRussia

Personalised recommendations