Advertisement

Kinetics and Catalysis

, Volume 46, Issue 1, pp 29–36 | Cite as

Solvation bifunctional catalysis of the hydrolysis of sulfonyl chlorides by hydration complexes of 2-propanol: influence of the substrate structure

  • S. N. Ivanov
  • A. V. Mikhailov
  • B. G. Gnedin
  • A. Yu. Lebedukho
  • V. P. Korolev
Article

Abstract

The temperature dependence of rate constants for the pseudo-first-order hydrolysis of 2-methylbenzenesulfonyl chloride, 1,5-naphthalenedisulfonyl chloride, and 4-acetamidobenzenesulfonyl chloride in water-2-propanol mixtures is studied in the i-PrOH mole fraction range x2 = 0−0.10. The concentration dependences of the enthalpy of activation and the entropy contribution (ϑ = 100(−TΔS)/(ΔG, %) for the hydrolyses of all sulfonyl chlorides are nonmonotonic, depending on the sulfonyl chloride structure and the degree of complementarity of the hydration complexes to the solvent structure. The sulfonyl chlorides are hydrolyzed via two pathways: one of them involves a water dimer as a bifunctional catalyst along with a water molecule as a nucleophile, and the other involves an alcohol hydrate.

Keywords

Entropy Hydrolysis Enthalpy Sulfonyl Solvent Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    Tiger, R.P., Levina, M.A., Entelis, S.G., and Andreev, M.A., Kinet. Katal., 2002, vol. 43, no. 5, p. 709.Google Scholar
  2. 2.
    Kessler, Yu.M. and Zaitsev, A.L., Sol’vofobnye effekty(Solvophobic Effects), Leningrad: Khimiya, 1989.Google Scholar
  3. 3.
    Hammer, G., Garde, S., Garcia, A.E., and Pratt, L.R., Chem. Phys., 2000, vol. 258, p. 349.Google Scholar
  4. 4.
    Yamskov, I.A., Yamskova, V.P., Danilenko, A.N., et al., Ross. Khim. Zh., 1999, vol. 43, no. 5, p. 34; Burlakova, E.B., Ross. Khim. Zh., 1999, vol. 43, no. 5, p. 3; Lo, Sh. and Li, V., Ross. Khim. Zh., 1999, vol. 43, no. 5, p. 40.Google Scholar
  5. 5.
    Tanford, C., The Hydrophobic Effects. Formation of Micelles and Biological Membranes, New York: Willey, 1980.Google Scholar
  6. 6.
    Savelova, V.A. and Oleinik, N.M., Mekhanizmy deistviya organicheskikh katalizatorov. Bifunktsional’nyi i vnutrimolekulyarnyi kataliz(Action of Organic Catalysts: Bifunctional and Intramolecular Catalysis), Kiev: Naukova Dumka, 1990.Google Scholar
  7. 7.
    Belusov, V.P. and Panov, M.Yu., Termodinamika vodnykh rastvorov neelektrolitov(Thermodynamics of Aqueous Solutions of Nonelectrolytes), Leningrad: Khimiya, 1983.Google Scholar
  8. 8.
    Krestov, G.A., Vinogradov, V.I., Kessler, Yu.M., et al., in Sovremennye problemy khimii rastvorov(Modern Problems of Solution Chemistry), Moscow: Nauka, 1986.Google Scholar
  9. 9.
    Engberts, J.B.F.N., Water: A Comprehensive Treatise, Franks, F., Ed., New York: Plenum, 1979, vol. 6, p. 139.Google Scholar
  10. 10.
    Winstein, S. and Fainberg, A.H., J. Am. Chem. Soc., 1957, vol. 79, no. 22, p. 5937; Robertson, R.E. and Sugamori, S.E., J. Am. Chem. Soc., 1969, vol. 91, no. 26, p. 7254.Google Scholar
  11. 11.
    Tommila, E. and Hictala, S., Acta Chem. Scand., 1954, vol. 8, no. 2, p. 254.Google Scholar
  12. 12.
    Panov, M.Yu. and Sokolova, O.B., Zh. Obshch. Khim., 1997, vol. 67, no. 11, p. 1799.Google Scholar
  13. 13.
    Haak, J.R. and Engberts, J.B.F.N., J. Am. Chem. Soc., 1986, vol. 108, no. 7, p. 1705.Google Scholar
  14. 14.
    Kislov, V.V., Ivanov, S.N., and Noskov, S.Yu., Zh. Obshch. Khim., 1997, vol. 67, no. 8, p. 1330.Google Scholar
  15. 15.
    Kislov, V.V., Ivanov, S.N., and Gnedin, B.G., Zh. Obshch. Khim., 1999, vol. 69, no. 3, p. 479.Google Scholar
  16. 16.
    Ivanov, S.N., Kislov, V.V., and Gnedin, B.G., Zh. Obshch. Khim., 2004, vol. 74, no. 1, p. 103.Google Scholar
  17. 17.
    Ikeguchi, M., Shimizu, S., Nakamura, S., and Shimizu, K., J. Phys. Chem. B, 1998, vol. 102, p. 5891.Google Scholar
  18. 18.
    Kevin, A.T.S., Haymet, A.D.J., and Dill, K.A., J. Am. Chem. Soc., 1998, vol. 120, p. 3166; Southhall, N.T. and Dill, K.A., J. Phys. Chem., 2000, vol. 104, p. 1326.Google Scholar
  19. 19.
    Lyashchenko, A.K., Lileev, A.S., Borina, A.F., and Shevchuk, T.S., Zh. Fiz. Khim., 1997, vol. 71, no. 3, p. 828; Lyashchenko, A.K., Lileev, A.S., and Novskova, T.A., 27th Int. Conf. on Solution Chemistry, Aachen, 2001.Google Scholar
  20. 20.
    Ivanov, S.N., Kislov, V.V., and Gnedin, B.G., Zh. Obshch. Khim., 2004, vol. 74, no. 1, p. 94.Google Scholar
  21. 21.
    Svoistva organicheskikh soedinenii. Spravochnik (Properties of Organic Compounds: A Handbook), Potekhin, A.A., Ed., Leningrad: Khimiya, 1984.Google Scholar
  22. 22.
    Donaldson, N., The Chemistry and Technology of Naphthalene Compounds, London: Arnold, 1958.Google Scholar
  23. 23.
    Shilov, E.A. and Kobenin, A.I., Zh. Prikl. Khim., 1945, vol. 18, no. 3, p. 112; Organikum: Organisch-chemisches Grundpraktikum, Berlin: Wissenschaften, 1962.Google Scholar
  24. 24.
    Laboratorni technika organicke chemie, Keil, B., Ed., Prague, 1963.Google Scholar
  25. 25.
    Taft, R.W., Rrise, E., Fox, I.R., and Lewis, I.S., J. Am. Chem. Soc., 1963, vol. 85, p. 709; Gordon, A. and Ford, R., The Chemists Companion, New York: Wiley, 1972.Google Scholar
  26. 26.
    Haughton, A.R., Laird, R.M., and Spence, M.J., J. Chem. Soc., Perkin Trans. 2, 1975, no. 6, p. 637.Google Scholar
  27. 27.
    Kislov, V.V. and Ivanov, S.N., Zh. Obshch. Khim., 2001, vol. 71, no. 5, p. 791.Google Scholar
  28. 28.
    Zavizion, V.A., Kudryashova, V.A., and Khurgin, Yu.I., Izv. Akad. Nauk SSSR, Ser. Khim., 1990, no. 8, p. 1755.Google Scholar
  29. 29.
    Dakar, G.M. and Korableva, E.Yu., Zh. Fiz. Khim., 1998, vol. 72, no. 4, p. 662.Google Scholar
  30. 30.
    Arnett, E.M., Bentrude, W.G., Burke, J.J., and Duggleby, M.P., J. Am. Chem. Soc., 1965, vol. 87, p. 1541.Google Scholar
  31. 31.
    Robertson, R.E. and Sugamori, S.E., J. Am. Chem. Soc., 1969, vol. 91, no. 26, p. 7254.Google Scholar
  32. 32.
    Mikhailov, A.V., Korolev, V.P., and Ivanov, S.N., Zh. Fiz. Khim., 2003, vol. 77, no. 9, p. 1722.Google Scholar
  33. 33.
    Kislov, V.V., Ivanov, S.N., and Petrov, V.M., Zh. Strukt. Khim., 2000, vol. 41, no. 5, p. 914.Google Scholar
  34. 34.
    Larina, T.V., Kern, A.P., and Lebed’, V.I., Zh. Strukt. Khim., 1996, vol. 70, no. 12, p. 2171.Google Scholar
  35. 35.
    Dakar, G.M. and Khakimov, P.A., Zh. Fiz. Khim., 1994, vol. 68, no. 6, p. 996.Google Scholar
  36. 36.
    Murthy, S.S.N., J. Phys. Chem. A, 1999, vol. 103, no. 40, p. 7927.Google Scholar
  37. 37.
    Sakurai, M., J. Solution Chem., 1988, vol. 17, p. 267.Google Scholar
  38. 38.
    Grunwald, E. and Steel, C., J. Am. Chem. Soc., 1995, vol. 117, p. 5687.Google Scholar
  39. 39.
    Aberlin, M.E. and Bunton, C.A., J. Org. Chem., 1970, vol. 35, no. 6, p. 1825.Google Scholar
  40. 40.
    Gnedin, B.G. and Ivanov, S.N., Zh. Org. Khim., 1977, vol. 13, no. 3, p. 595; Gnedin, B.G. and Ivanov, S.N., Zh. Org. Khim., 1978, vol. 14, no. 4, p. 772.Google Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2005

Authors and Affiliations

  • S. N. Ivanov
    • 1
  • A. V. Mikhailov
    • 2
  • B. G. Gnedin
    • 1
  • A. Yu. Lebedukho
    • 1
  • V. P. Korolev
    • 2
  1. 1.Ivanovo State UniversityIvanovoRussia
  2. 2.Institute of Chemistry of SolutionsRussian Academy of SciencesIvanovoRussia

Personalised recommendations