Kinetics and Catalysis

, Volume 46, Issue 1, pp 1–9 | Cite as

Kinetic parameters of the cyclization and decyclization reactions of nitrogen- and oxygen-containing radicals

  • T. G. Denisova
  • E. T. Denisov


The intersecting parabolas model is used to analyze experimental data for the following radical cyclization and decyclization reactions: RCH=CH(CH2) n N·R1cyclo-[NR1CH(CH2) n ]C·HR, R(CH2)2OOCH2C·HR → cyclo-[RCHOCH2] + RCH2CH2O·, cyclo-[(CH2) n OOCHC· HR] → cyclo-[RCHOCH](CH2) n O·, cyclo-[(CH2) n OC·RO] → RC(O)O(CH2)n − 1C·H2, and cyclo-[(CH2) n CHO·] → CH(O)(CH2)n − 1C·H2. The activation energy of the thermally neutral reaction (Ee,0) is calculated for each class of reactions. Ee,0 depends on the electronegativity of the heteroatom Y of the reaction center C\(\underline \cdots\)C...Y, the force constants of the reacting bonds, and the strain energy of the ring formed. For the cyclization and decyclization of six-membered rings, the empirical relationship between the elongation of the reacting bonds in the transition state (re) and the difference in electronegativity (ΔEA) between the C and Y atoms (Y = C, N, O) has the form re × 1011, m = 3.83 − 0.0198(ΔEA, kJ/mol).


Nitrogen Experimental Data Physical Chemistry Activation Energy Catalysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Wilt, J.W., Free Radicals, Kochi, J.K., Ed., New York: Wiley, 1973, vol. 1, p. 333.Google Scholar
  2. 2.
    Chatgilialoglu, C. and Renaud, P., General Aspects of the Chemistry of Radicals, Alfassi, Z.B., Ed., New York: Wiley, 1999, p. 501.Google Scholar
  3. 3.
    Denisova, T.G. and Denisov, E.T., Izv. Akad. Nauk, Ser.Khim., 2002, no. 6, p. 871.Google Scholar
  4. 4.
    Denisov, E.T., Denisova, T.G., and Pokidova, T.S., Handbook of Free Radical Initiators, New York: Wiley, 2003.Google Scholar
  5. 5.
    Denisov, E.T., Usp. Khim., 1997, vol. 66, no. 10, p. 953.Google Scholar
  6. 6.
    Denisov, E.T., Usp. Khim., 2000, vol. 69, no. 2, p. 166.Google Scholar
  7. 7.
    Denisov, E.T., General Aspects of the Chemistry of Radicals, Alfassi, Z.B., Ed., New York: Wiley, 1999, p. 79.Google Scholar
  8. 8.
    Lias, S.G., Liebman, J.F., Levin, R.D., Kafafi, S.A., and Stein, S.E., NIST Standard Reference Database 19A: NIST Positive Ion Energetics, Version 2.0, Gaithersburg, 1993.Google Scholar
  9. 9.
    Benson, S.W., Thermochemical Kinetics, New York: Wiley, 1976.Google Scholar
  10. 10.
    Domalski, E.S. and Hearing, E.D., J. Phys. Chem. Ref.Data, 1993, vol. 22, no. 4, p. 805.Google Scholar
  11. 11.
    Mill, T. and Hendry, D.G., Comprehensive Chemical Kinetics, Bamford, C.H. and Tipper, C.F.H., Eds.,Amsterdam: Elsevier, 1980, vol. 16, p. 1.Google Scholar
  12. 12.
    Mayo, F.R., Syz, M.G., Mill, T., and Castleman, J.K., Adv. Chem. Ser., 1968, vol. 75, p. 38.Google Scholar
  13. 13.
    Tomaszewski, M.J. and Warkentin, J., Tetrahedron Lett., 1992, vol. 33, p. 2123.Google Scholar
  14. 14.
    Porter, N.A., Lehman, L.S., Weber, B.A., and Smith, K.J., J. Am. Chem. Soc., 1981, vol. 103, no. 21, p. 6447.Google Scholar
  15. 15.
    Barclay, L.R.C., Griller, D., and Ingold, K.U., J. Am. Chem. Soc., 1982, vol. 104, no. 16, p. 4399.Google Scholar
  16. 16.
    Perkins, J.M. and Roberts, B.P., J. Chem. Soc., Perkin Trans. 2, 1975, no. 1, p. 77.Google Scholar
  17. 17.
    Bloodworth, A.J., Courtneidge, J.L., and Davies, A.G., J. Chem. Soc., Perkin Trans. 2, 1984, no. 3, p. 523.Google Scholar
  18. 18.
    Beckwith, A.L.J. and Hay, B.P., J. Am. Chem. Soc., 1989, vol. 111, no. 1, p. 230.Google Scholar
  19. 19.
    Beckwith, A.L.J. and Raner, K.D., J. Org. Chem., 1992, vol. 57, no. 18, p. 4954.Google Scholar
  20. 20.
    Beckwith, A.L.J. and Hay, B.P., J. Am. Chem. Soc., 1989, vol. 111, no. 7, p. 2674.Google Scholar
  21. 21.
    Newcomb, M., Musa, O.M., Martines, F.N., and Horner, J.H., J. Am. Chem. Soc., 1997, vol. 119, no. 20, p. 4569.Google Scholar
  22. 22.
    Musa, O.M., Horner, J.H., Shahin, H., and Newcomb, M., J. Am. Chem. Soc., 1996, vol. 118, no. 16, p. 3862.Google Scholar
  23. 23.
    Newcomb, M., Tanaka, N., Bouvier, A., Tronche, C., Horner, J.H., Musa, O.M., and Martinez, F.N., J. Am.Chem. Soc., 1996, vol. 118, no. 35, p. 8505.Google Scholar
  24. 24.
    Esker, J.L. and Newcomb, M., J. Org. Chem., 1993, vol. 58, no. 18, p. 4933.Google Scholar
  25. 25.
    Beckwith, A.L.J., Wang, S., and Warkentin, J., J. Am. Chem. Soc., 1987, vol. 109, no. 17, p. 5289.Google Scholar
  26. 26.
    Kunka, C.P.A. and Warkentin, J., Can. J. Chem., 1990, vol. 68, no. 4, p. 575.Google Scholar
  27. 27.
    Luo, Y.-R., Handbook of Bond Dissociation Energies in Organic Compounds, Boca Raton: CRC, 2003.Google Scholar
  28. 28.
    Pokidova, T.S. and Denisov, E.T., Izv. Akad. Nauk, Ser. Khim., 2001, no. 3, p. 373.Google Scholar
  29. 29.
    Pauling, L., General Chemistry, San Francisco: Freeman, 1970.Google Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2005

Authors and Affiliations

  • T. G. Denisova
    • 1
  • E. T. Denisov
    • 1
  1. 1.Institute of Chemical PhysicsRussian Academy of SciencesMoscow oblastRussia

Personalised recommendations