Skip to main content

The role of satellite and other functional cell types in muscle repair and regeneration

Abstract

Skeletal muscles play essential roles in physiological processes, including motor function, energy hemostasis, and respiration. Skeletal muscles also have the capacity to regenerate after injury. Regeneration of skeletal muscle is an extremely complex biological process, which involves multiple cell types. Skeletal muscle stem cells (also known as satellite cells; SCs) are crucial for the development, growth, maintenance and repair of the skeletal muscle. Cell fates and function have been extensively studied in the context of skeletal muscle regeneration. In addition to SCs, other cell types, such as fibro-adipogenic precursors (FAPs), endothelial cells, fibroblasts, pericytes and certain immune cells, play important regulatory roles during skeletal muscle regeneration. In this review, we summarize and discuss the current research progress on the different cell types and their respective functions in skeletal muscle regeneration and repair.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  • Almada AE, Wagers AJ (2016) Molecular circuitry of stem cell fate in skeletal muscle regeneration, ageing and disease. Nat Rev Mol Cell Biol 17:267–279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aranguren XL, Pelacho B, Peñuelas Abizanda G, Uriz M, Ecay M, Collantaes M, Araña M, Beerens M, Coppiello G, Prieto I, Perez-Ilzarbe M, Andreu EJ, Luttun A, Prósper F (2011) MAPC transplantation confers a more durable benefit than AC133+ cell transplantation in severe hind limb ischemia. Cell Transplant 20(2):259–269

    Article  PubMed  Google Scholar 

  • Arnold L, Henry A, Poron F, Baba-Amer Y, van Rooijen N, Plonquet A, Gherardi RK, Chazaud B (2007) Inflammatory monocytes recruited after skeletal muscle injury switch into antiinflammatory macrophages to support myogenesis. J Exp Med 204:1057–1069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baghdadi MB, Tajbakhsh S (2018) Regulation and phylogeny of skeletal muscle regeneration. Dev Biol 433:200–209

    Article  CAS  PubMed  Google Scholar 

  • Bi P, Yue F, Sato Y, Wirbisky S, Liu W, Shan T, Wen Y, Zhou D, Freeman J, Kuang S (2016) Stage-specific effects of Notch activation during skeletal myogenesis. Elife 5:e17355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Birbrair A, Zhang T, Wang ZM, Messi ML, Enikolopov GN, Mintz A, Delbono O (2013a) Role of pericytes in skeletal muscle regeneration and fat accumulation. Stem Cells Dev 22:2298–2314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Birbrair A, Zhang T, Wang ZM, Messi ML, Mintz A, Delbono O (2013b) Type-1 pericytes participate in fibrous tissue deposition in aged skeletal muscle. Am J Physiol Cell Physiol 305:C1098–C1113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blau HM, Cosgrove BD, Ho AT (2015) The central role of muscle stem cells in regenerative failure with aging. Nat Med 21:854–862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blotnick S, Peoples GE, Freeman MR, Eberlein TJ, Klagsbrun M (1994) T-lymphocytes synthesize and export heparin-binding epidermal growth factor-like growth-factor and basic fibroblast growth-factor, mitogens for vascular cells and fibroblasts—differential production and release by Cd4+ And Cd8+ T-cells. Proc Natl Acad Sci USA 91:2890–2894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brack AS, Rando TA (2012) Tissue-specific stem cells: lessons from the skeletal muscle satellite cell. Cell Stem Cell 10:504–514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brack AS, Conboy MJ, Roy S, Lee M, Kuo CJ, Keller C, Rando TA (2007) Increased Wnt signaling during aging alters muscle stem cell fate and increases fibrosis. Science 317:807–810

    Article  CAS  PubMed  Google Scholar 

  • Buckingham M, Relaix F (2007) The role of Pax genes in the development of tissues and organs: Pax3 and Pax7 regulate muscle progenitor cell functions. Annu Rev Cell Dev Biol 23:645–673

    Article  CAS  PubMed  Google Scholar 

  • Burzyn D, Kuswanto W, Kolodin D, Shadrach JL, Cerletti M, Jang Y, Sefik E, Tan TG, Wagers AJ, Benoist C, Mathis D (2013) A special population of regulatory T cells potentiates muscle repair. Cell 155:1282–1295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ceafalan LC, Popescu BO, Hinescu ME (2014) Cellular players in skeletal muscle regeneration. Biomed Res Int 2014:957014

    Article  PubMed  PubMed Central  Google Scholar 

  • Cheung TH, Rando TA (2013) Molecular regulation of stem cell quiescence. Nat Rev Mol Cell Biol 14:329–340

    Article  CAS  PubMed  Google Scholar 

  • Collins CA, Olsen I, Zammit PS, Heslop L, Petrie A, Partridge TA, Morgan JE (2005) Stem cell function, self-renewal, and behavioral heterogeneity of cells from the adult muscle satellite cell niche. Cell 122:289–301

    Article  CAS  PubMed  Google Scholar 

  • Conboy IM, Conboy MJ, Smythe GM, Rando TA (2003) Notch-mediated restoration of regenerative potential to aged muscle. Science 302:1575–1577

    Article  CAS  PubMed  Google Scholar 

  • Cornelison DDW, Wold BJ (1997) Single-cell analysis of regulatory gene expression in quiescent and activated mouse skeletal muscle satellite cells. Dev Biol 191:270–283

    Article  CAS  PubMed  Google Scholar 

  • Cottle BJ, Lewis FC, Shone V, Ellison-Hughes GM (2017) Skeletal muscle-derived interstitial progenitor cells (PICs) display stem cell properties, being clonogenic, self-renewing, and multi-potent in vitro and in vivo. Stem Cell Res Ther 8(1):158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Angelis L, Berghella L, Coletta M, Lattanzi L, Zanchi M, Cusella-De Angelis MG, Ponzetto C, Cossu G (1999) Skeletal myogenic progenitors originating from embryonic dorsal aorta coexpress endothelial and myogenic markers and contribute to postnatal muscle growth and regeneration. J Cell Biol 147(4):869–878

    Article  PubMed  PubMed Central  Google Scholar 

  • Dellavalle A, Maroli G, Covarello D, Azzoni E, Innocenzi A, Perani L, Antonini S, Sambasivan R, Brunelli S, Tajbakhsh S, Cossu G (2011) Pericytes resident in postnatal skeletal muscle differentiate into muscle fibres and generate satellite cells. Nat Commun 2:499

    Article  CAS  PubMed  Google Scholar 

  • Diaz-Manera J, Gallardo E, de Luna N, Navas M, Soria L, Garibaldi M, Rojas-Garcia R, Tonlorenzi R, Cossu G, Illa I (2012) The increase of pericyte population in human neuromuscular disorders supports their role in muscle regeneration in vivo. J Pathol 228:544–553

    Article  CAS  PubMed  Google Scholar 

  • Dumont NA, Wang YX, von Maltzahn J, Pasut A, Bentzinger CF, Brun CE, Rudnicki MA (2015) Dystrophin expression in muscle stem cells regulates their polarity and asymmetric division. Nat Med 21:1455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Filigheddu N, Gnocchi VF, Coscia M, Cappelli M, Porporato PE, Taulli R, Traini S, Baldanzi G, Chianale F, Cutrupi S, Arnoletti E, Ghe C, Fubini A, Surico N, Sinigaglia F, Ponzetto C, Muccioli G, Crepaldi T, Graziani A (2007) Ghrelin and des-acyl ghrelin promote differentiation and fusion of C2C12 skeletal muscle cells. Mol Biol Cell 18:986–994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fontenot JD, Gavin MA, Rudensky AY (2003) Foxp3 programs the development and function of CD4(+)CD25(+) regulatory T cells. Nat Immunol 4:330–336

    Article  CAS  PubMed  Google Scholar 

  • Fontenot JD, Gavin MA, Rudensky AY (2017) Foxp3 programs the development and function of CD4(+)CD25(+) regulatory T cells. J Immunol 198:986–992

    CAS  PubMed  Google Scholar 

  • Fry CS, Lee JD, Mula J, Kirby TJ, Jackson JR, Liu FJ, Yang L, Mendias CL, Dupont-Versteegden EE, McCarthy JJ, Peterson CA (2015) Inducible depletion of satellite cells in adult, sedentary mice impairs muscle regenerative capacity without affecting sarcopenia. Nat Med 21:76–80

    Article  CAS  PubMed  Google Scholar 

  • Fu X, Xiao J, Wei YN, Li S, Liu Y, Yin J, Sun K, Sun H, Wang HT, Zhang ZK, Zhang BT, Sheng C, Wang HY, Hu P (2015) Combination of inflammation-related cytokines promotes long-term muscle stem cell expansion. Cell Res 25:655–673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fukada SI (2018) The roles of muscle stem cells in muscle injury, atrophy and hypertrophy. J Biochem 163:353–358

    Article  CAS  PubMed  Google Scholar 

  • Geissmann F, Jung S, Littman DR (2003) Blood monocytes consist of two principal subsets with distinct migratory properties. Immunity 19:71–82

    Article  CAS  PubMed  Google Scholar 

  • Girardi F, Le Grand F (2018) Wnt signaling in skeletal muscle development and regeneration. Prog Mol Biol Transl Sci 153:157–179

    Article  PubMed  Google Scholar 

  • Hardy D, Besnard A, Latil M, Jouvion G, Briand D, Thépenier C, Pascal Q, Guguin A, Gayraud-Morel B, Cavaillon JM, Tajbakhsh S, Rocheteau P, Chrétien F (2016) Comparative study of injury models for studying muscle regeneration in mice. PLoS ONE 11(1):e0147198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heredia JE, Mukundan L, Chen FM, Mueller AA, Deo RC, Locksley RM, Rando TA, Chawla A (2013) Type 2 innate signals stimulate fibro/adipogenic progenitors to facilitate muscle regeneration. Cell 153:376–388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoeng JC, Dawson SC, House SA, Sagolla MS, Pham JK, Mancuso JJ, Lowe J, Cande WZ (2008) High-resolution crystal structure and in vivo function of a kinesin-2 homologue in Giardia intestinalis. Mol Biol Cell 19:3124–3137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horsley V, Jansen KM, Mills ST, Pavlath GK (2003) IL-4 acts as a myoblast recruitment factor during mammalian muscle growth. Cell 113:483–494

    Article  CAS  PubMed  Google Scholar 

  • Hu Z, Wang H, Lee IH, Modi S, Wang X, Du J, Mitch WE (2010) PTEN inhibition improves muscle regeneration in mice fed a high-fat diet. Diabetes 59:1312–1320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iizuka K, Machida T, Hirafuji M (2014) Skeletal muscle is an endocrine organ. J Pharmacol Sci 125:125–131

    Article  CAS  PubMed  Google Scholar 

  • Janssen I, Heymsfield SB, Wang Z, Ross R (2014) Skeletal muscle mass and distribution in 468 men and women aged 18–88 yr. (vol 89, pg 81, 2000). J Appl Physiol 116:1342

    Article  Google Scholar 

  • Joe AWB, Yi L, Natarajan A, Le Grand F, So L, Wang J, Rudnicki MA, Rossi FMV (2010) Muscle injury activates resident fibro/adipogenic progenitors that facilitate myogenesis. Nat Cell Biol 12:U144–U153

    Article  CAS  Google Scholar 

  • Josefowicz SZ, Lu LF, Rudensky AY (2012) Regulatory T cells: mechanisms of differentiation and function. Annu Rev Immunol 30(30):531–564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Juban G, Chazaud B (2017) Metabolic regulation of macrophages during tissue repair: insights from skeletal muscle regeneration. FEBS Lett 591:3007–3021

    Article  CAS  PubMed  Google Scholar 

  • Kim J, Lee J (2017) Role of transforming growth factor-beta in muscle damage and regeneration: focused on eccentric muscle contraction. J Exerc Rehabil 13:621–626

    Article  PubMed  PubMed Central  Google Scholar 

  • Kolaczkowska E, Kubes P (2013) Neutrophil recruitment and function in health and inflammation. Nat Rev Immunol 13:159–175

    Article  CAS  PubMed  Google Scholar 

  • Kuang S, Charge SB, Seale P, Huh M, Rudnicki MA (2006) Distinct roles for Pax7 and Pax3 in adult regenerative myogenesis. J Cell Biol 172:103–113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuswanto W, Burzyn D, Panduro M, Wang KK, Jang YC, Wagers AJ, Benoist C, Mathis D (2016) Poor repair of skeletal muscle in aging mice reflects a defect in local, interleukin-33-dependent accumulation of regulatory T cells. Immunity 44:355–367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Latroche C, Weiss-Gayet M, Muller L, Gitiaux C, Leblanc P, Liot S, Ben-Larbi S, Abou-Khalil R, Verger N, Bardot P, Magnan M, Chretien F, Mounier R, Germain S, Chazaud B (2017) Coupling between myogenesis and angiogenesis during skeletal muscle regeneration is stimulated by restorative macrophages. Stem Cell Reports 9:2018–2033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leavy O (2014) Regulatory T cells: muscling in on repair. Nat Rev Immunol 14:63

    Article  CAS  PubMed  Google Scholar 

  • Lemos DR, Babaeijandaghi F, Low M, Chang CK, Lee ST, Fiore D, Zhang RH, Natarajan A, Nedospasov SA, Rossi FM (2015) Nilotinib reduces muscle fibrosis in chronic muscle injury by promoting TNF-mediated apoptosis of fibro/adipogenic progenitors. Nat Med 21:786–794

    Article  CAS  PubMed  Google Scholar 

  • Lewis FC, Henning BJ, Marazzi G, Sassoon D, Ellison GM, Nadal-Ginard B (2014) Porcine skeletal muscle-derived multipotent PW1pos/Pax7neg interstitial cells: isolation, characterization, and long-term culture. Stem Cell Transl Med 3(6):702–712

    Article  CAS  Google Scholar 

  • Liu W, Wen Y, Bi P, Lai X, Liu XS, Liu X, Kuang S (2012) Hypoxia promotes satellite cell self-renewal and enhances the efficiency of myoblast transplantation. Development 139:2857–2865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Masopust D, Schenkel JM (2013) The integration of T cell migration, differentiation and function. Nat Rev Immunol 13:309–320

    Article  CAS  PubMed  Google Scholar 

  • Mathew SJ, Hansen JM, Merrell AJ, Murphy MM, Lawson JA, Hutcheson DA, Hansen MS, Angus-Hill M, Kardon G (2011) Connective tissue fibroblasts and Tcf4 regulate myogenesis. Development 138:371–384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mauro A (1961) Satellite cell of skeletal muscle fibers. J Biophys Biochem Cytol 9:493–495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mitchell KJ, Pannérec A, Cadot B, Parlakian A, Besson V, Gomes ER, Marazzi G, Sassoon DA (2010) Identification and characterization of a non-satellite cell muscle resident progenitor during postnatal development. Nat Cell Biol 12(3):257–266

    Article  CAS  PubMed  Google Scholar 

  • Mofarrahi M, McClung JM, Kontos CD, Davis EC, Tappuni B, Moroz N, Pickett AE, Huck L, Harel S, Danialou G, Hussain SNA (2015) Angiopoietin-1 enhances skeletal muscle regeneration in mice. Am J Physiol Regul Integr Comp Physiol 308:R576–R589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Motohashi N, Asakura A (2014) Muscle satellite cell heterogeneity and self-renewal. Front Cell Dev Biol 2:1

    Article  PubMed  PubMed Central  Google Scholar 

  • Mozzetta C, Consalvi S, Saccone V, Tierney M, Diamantini A, Mitchell KJ, Marazzi G, Borsellino G, Battistini L, Sassoon D, Sacco A, Puri PL (2013) Fibroadipogenic progenitors mediate the ability of HDAC inhibitors to promote regeneration in dystrophic muscles of young, but not old Mdx mice. Embo Mol Med 5:626–639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murphy MM, Lawson JA, Mathew SJ, Hutcheson DA, Kardon G (2011) Satellite cells, connective tissue fibroblasts and their interactions are crucial for muscle regeneration. Development 138:3625–3637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parise G, Mckinnell IW, Rudnicki MA (2008) Muscle satellite cell and atypical myogenic progenitor response following exercise. Muscle Nerve 37:611–619

    Article  CAS  PubMed  Google Scholar 

  • Perry RL, Rudnick MA (2000) Molecular mechanisms regulating myogenic determination and differentiation. Front Biosci 5:D750–D767

    Article  CAS  PubMed  Google Scholar 

  • Polesskaya A, Seale P, Rudnicki MA (2003) Wnt signaling induces the myogenic specification of resident CD45+ adult stem cells during muscle regeneration. Cell 113:841–852

    Article  CAS  PubMed  Google Scholar 

  • Quarta M, Brett JO, DiMarco R, De Morree A, Boutet SC, Chacon R, Gibbons MC, Garcia VA, Su J, Shrager JB, Heilshorn S, Rando TA (2016) An artificial niche preserves the quiescence of muscle stem cells and enhances their therapeutic efficacy. Nat Biotechnol 34:752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Relaix F, Zammit PS (2012) Satellite cells are essential for skeletal muscle regeneration: the cell on the edge returns centre stage. Development 139:2845–2856

    Article  CAS  PubMed  Google Scholar 

  • Relaix F, Montarras D, Zaffran S, Gayraud-Morel B, Rocancourt D, Tajbakhsh S, Mansouri A, Cumano A, Buckingham M (2006) Pax3 and Pax7 have distinct and overlapping functions in adult muscle progenitor cells. J Cell Biol 172:91–102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rothenberg ME, Hogan SP (2006) The eosinophil. Ann Rev Immunol 24:147–174

    Article  CAS  Google Scholar 

  • Sacco A, Doyonnas R, Kraft P, Vitorovic S, Blau HM (2008) Self-renewal and expansion of single transplanted muscle stem cells. Nature 456:502–506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saclier M, Cuvellier S, Magnan M, Mounier R, Chazaud B (2013) Monocyte/macrophage interactions with myogenic precursor cells during skeletal muscle regeneration. FEBS J 280:4118–4130

    Article  CAS  PubMed  Google Scholar 

  • Schiaffino S, Mammucari C (2011) Regulation of skeletal muscle growth by the IGF1-Akt/PKB pathway: insights from genetic models. Skelet Muscle 1:4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sciorati C, Rigamonti E, Manfredi AA, Rovere-Querini P (2016) Cell death, clearance and immunity in the skeletal muscle. Cell Death Differ 23:927–937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seale P, Sabourin LA, Girgis-Gabardo A, Mansouri A, Gruss P, Rudnicki MA (2000) Pax7 is required for the specification of myogenic satellite cells. Cell 102:777–786

    Article  CAS  PubMed  Google Scholar 

  • Seale P, Ishibashi J, Scime A, Rudnicki MA (2004) Pax7 is necessary and sufficient for the myogenic specification of CD45(+): Sca1(+) stem cells from injured muscle. PLoS Biol 2:664–672

    Article  Google Scholar 

  • Serena E, Zatti S, Zoso A, Lo Verso F, Tedesco FS, Cossu G, Elvassore N (2016) Skeletal muscle differentiation on a chip shows human donor mesoangioblasts' efficiency in restoring dystrophin in a duchenne muscular dystrophy model. Stem Cells Transl Med 5(12):1676–1683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shan T, Zhang P, Liang X, Bi P, Yue F, Kuang S (2014) Lkb1 is indispensable for skeletal muscle development, regeneration, and satellite cell homeostasis. Stem Cells 32:2893–2907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shan T, Xu Z, Liu J, Wu W, Wang Y (2017a) Lkb1 regulation of skeletal muscle development, metabolism and muscle progenitor cell homeostasis. J Cell Physiol 232:2653–2656

    Article  CAS  PubMed  Google Scholar 

  • Shan T, Xu Z, Wu W, Liu J, Wang Y (2017b) Roles of Notch1 signaling in regulating satellite cell fates choices and postnatal skeletal myogenesis. J Cell Physiol 232:2964–2967

    Article  CAS  PubMed  Google Scholar 

  • Sousa-Victor P, Garcia-Prat L, Serrano AL, Perdiguero E, Munoz-Canoves P (2015) Muscle stem cell aging: regulation and rejuvenation. Trends Endocrinol Metab 26:287–296

    Article  CAS  PubMed  Google Scholar 

  • Spencer MJ, Walsh CM, Dorshkind KA, Rodriguez EM, Tidball JG (1997) Myonuclear apoptosis in dystrophic mdx muscle occurs by perforin-mediated cytotoxicity. J Clin Investig 99:2745–2751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tatsumi R, Anderson JE, Nevoret CJ, Halevy O, Allen RE (1998) HGF/SF is present in normal adult skeletal muscle and is capable of activating satellite cells. Dev Biol 194:114–128

    Article  CAS  PubMed  Google Scholar 

  • Thomas GD (2013) Functional muscle ischemia in Duchenne and Becker muscular dystrophy. Front Physiol 4:381

    Article  PubMed  PubMed Central  Google Scholar 

  • Tidball JG, Villalta SA (2010) Regulatory interactions between muscle and the immune system during muscle regeneration. Am J Physiol Regul Integr Comp Physiol 298:R1173–R1187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Torrente Y, Belicchi M, Sampaolesi M, Pisati F, Meregalli M, D'Antona G, Tonlorenzi R, Porretti L, Gavina M, Mamchaoui K, Pellegrino MA, Furling D, Mouly V, Butler-Browne GS, Bottinelli R, Cossu G, Bresolin N (2004) Human circulating AC133+ stem cells restore dystrophin expression and ameliorate function in dystrophic skeletal muscle. J Clin Invest 114(2):182–195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uezumi A, Fukada S, Yamamoto N, Takeda S, Tsuchida K (2010) Mesenchymal progenitors distinct from satellite cells contribute to ectopic fat cell formation in skeletal muscle. Nat Cell Biol 12:143–152

    Article  CAS  PubMed  Google Scholar 

  • Varga T, Mounier R, Gogolak P, Poliska S, Chazaud B, Nagy L (2013) Tissue LyC6(-) macrophages are generated in the absence of circulating LyC6(-) monocytes and Nur77 in a model of muscle regeneration. J Immunol 191:5695–5701

    Article  CAS  PubMed  Google Scholar 

  • Varga T, Mounier R, Horvath A, Cuvellier S, Dumont F, Poliska S, Ardjoune H, Juban G, Nagy L, Chazaud B (2016) Highly dynamic transcriptional signature of distinct macrophage subsets during sterile inflammation, resolution, and tissue repair. J Immunol 196:4771–4782

    Article  CAS  PubMed  Google Scholar 

  • von Maltzahn J, Jones AE, Parks RJ, Rudnicki MA (2013) Pax7 is critical for the normal function of satellite cells in adult skeletal muscle. Proc Natl Acad Sci USA 110:16474–16479

    Article  Google Scholar 

  • Wang YX, Rudnicki MA (2011) Satellite cells, the engines of muscle repair. Nat Rev Mol Cell Biol 13:127–133

    Article  CAS  PubMed  Google Scholar 

  • Wen Y, Bi P, Liu W, Asakura A, Keller C, Kuang S (2012) Constitutive Notch activation upregulates Pax7 and promotes the self-renewal of skeletal muscle satellite cells. Mol Cell Biol 32:2300–2311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wosczyna MN, Rando TA (2018) A muscle stem cell support group: coordinated cellular responses in muscle regeneration. Dev Cell 46:135–143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yue F, Bi P, Wang C, Li J, Liu X, Kuang S (2016) Conditional loss of Pten in myogenic progenitors leads to postnatal skeletal muscle hypertrophy but age-dependent exhaustion of satellite cells. Cell Rep 17:2340–2353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yue F, Bi PP, Wang C, Shan TZ, Nie YH, Ratliff TL, Gavin TP, Kuang SH (2017) Pten is necessary for the quiescence and maintenance of adult muscle stem cells. Nat Commun 8:14328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zammit PS, Golding JP, Nagata Y, Hudon V, Partridge TA, Beauchamp JR (2004) Muscle satellite cells adopt divergent fates: a mechanism for self-renewal? J Cell Biol 166:347–357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Xiao ZC, Qu C, Cui W, Wang XN, Du J (2014) CD8 T cells are involved in skeletal muscle regeneration through facilitating MCP-1 secretion and Gr1(high) macrophage infiltration. J Immunol 193:5149–5160

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The project was partially supported by the National Natural Science Foundation of China (Grant No. 31672427) to TZS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tizhong Shan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chen, B., Shan, T. The role of satellite and other functional cell types in muscle repair and regeneration. J Muscle Res Cell Motil 40, 1–8 (2019). https://doi.org/10.1007/s10974-019-09511-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10974-019-09511-3

Keywords

  • Muscle regeneration
  • Satellite cell
  • Fibro-adipogenic precursor
  • Endothelial cell
  • Immune cell
  • Lymphocyte