Acidosis affects muscle contraction by slowing the rates myosin attaches to and detaches from actin

Abstract

The loss of muscle force and power during fatigue from intense contractile activity is associated with, and likely caused by, elevated levels of phosphate (\(\mathrm {P}_{\mathrm{i}}\)) and hydrogen ions (decreased pH). To understand how these deficits in muscle performance occur at the molecular level, we used direct measurements of mini-ensembles of myosin generating force in the laser trap assay at pH 7.4 and 6.5. The data are consistent with a mechanochemical model in which a decrease in pH reduces myosin’s detachment from actin (by slowing ADP release), increases non-productive myosin binding (by detached myosin rebinding without a powerstroke), and reduces myosin’s attachment to actin (by slowing the weak-to-strong binding transition). Additional support of this mechanism is found by incorporating it into a branched pathway model for the effects of \(\mathrm {P}_{\mathrm{i}}\) on myosin’s interaction with actin. Including pH-dependence in one additional parameter (acceleration of \(\mathrm {P}_{\mathrm{i}}\)-induced detachment), the model reproduces experimental measurements at high and low pH, and variable \(\mathrm {P}_{\mathrm{i}}\), from the single molecule to large ensemble levels. Furthermore, when scaled up, the model predicts force-velocity relationships that are consistent with muscle fiber measurements. The model suggests that reducing pH has two opposing effects, a decrease in attachment favoring a decrease in muscle force and a decrease in detachment favoring an increase in muscle force. Depending on experimental details, the addition of \(\mathrm {P}_{\mathrm{i}}\) can strengthen one or the other effect, resulting in either synergistic or antagonistic effects. This detailed molecular description suggests a molecular basis for contractile failure during muscle fatigue.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Allen DG, Lamb GD, Westerblad H (2008) Skeletal muscle fatigue: cellular mechanisms. Physiol Rev 88:287–332

    Article  CAS  PubMed  Google Scholar 

  2. Allen D, Westerblad H (2004) Lactic acid—the latest performance-enhancing drug. Science 305:1112–1113

    Article  CAS  PubMed  Google Scholar 

  3. Baker JE, Brosseau C, Joel PB, Warshaw DM (2002) The biochemical kinetics underlying actin movement generated by one and many skeletal muscle myosin molecules. Biophys J 82:2134–2147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bell GI (1978) Models for the specific adhesion of cells to cells. Science 200:618–627

    Article  CAS  PubMed  Google Scholar 

  5. Bottinelli R, Canepari M, Pellegrino MA, Reggiani C (1996) Force-velocity properties of human skeletal muscle fibres: myosin heavy chain isoform and temperature dependence. J Physiol 495:573–586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bowater R, Sleep J (1988) Demembranated muscle fibers catalyze a more rapid exchange between phosphate and adenosine triphosphate than actomyosin subfragment 1. Biochemistry 27:5314–5323

    Article  CAS  PubMed  Google Scholar 

  7. Cady EB, Jones DA, Lynn J, Newham DJ (1989) Changes in force and intracellular metabolites during fatigue of human skeletal muscle. J Physiol 418:311–325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Campbell KS (2009) Interactions between connected half-sarcomeres produce emergent mechanical behavior in a mathematical model of muscle. PLoS Comput Biol 5:e1000560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Campbell KS (2016) Compliance accelerates relaxation in muscle by allowing myosin heads to move relative to actin. Biophys J 110:661–668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Capitanio M, Canepari M, Cacciafesta P, Lombardi V, Cicchi R, Maffei M, Pavone FS, Bottinelli R (2006) Two independent mechanical events in the interaction cycle of skeletal muscle myosin with actin. Proc Natl Acad Sci 103:87–92

    Article  CAS  PubMed  Google Scholar 

  11. Chase PB, Kushmerick MJ (1988) Effects of pH on contraction of rabbit fast and slow skeletal muscle fibers. Biophys J 53:935–946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Cooke R, Franks K, Luciani GB, Pate E (1988) The inhibition of rabbit skeletal muscle contraction by hydrogen ions and phosphate. J Physiol 395:77–97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Cooke R, Pate E (1985) The effects of ADP and phosphate on the contraction of muscle fibers. Biophys J 48:789–798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Debold EP (2012) Recent insights into muscle fatigue at the cross-bridge level. Front Physiol 3:151

    Article  PubMed  PubMed Central  Google Scholar 

  15. Debold EP, Beck SE, Warshaw DM (2008) Effect of low pH on single skeletal muscle myosin mechanics and kinetics. Am J Physiol 295:C173–C179

    Article  CAS  Google Scholar 

  16. Debold EP, Dave H, Fitts RH (2004) Fiber type and temperature dependence of inorganic phosphate: implications for fatigue. Am J Physiol 287:C673–C681

    Article  CAS  Google Scholar 

  17. Debold EP, Fitts RH, Sundberg C, Nosek TM (2016) Muscle fatigue from the perspective of a single crossbridge. Med Sci Sports Exerc 48:2270–2280

    Article  CAS  PubMed  Google Scholar 

  18. Debold EP, Longyear TJ, Turner MA (2012) The effects of phosphate and acidosis on regulated thin-filament velocity in an in vitro motility assay. J Appl Physiol 113:1413–1422

    Article  CAS  PubMed  Google Scholar 

  19. Debold EP, Patlak JB, Warshaw DM (2005) Slip sliding away: load-dependence of velocity generated by skeletal muscle myosin molecules in the laser trap. Biophys J 89:L34–L36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Debold EP, Turner MA, Stout JC, Walcott S (2011) Phosphate enhances myosin-powered actin filament velocity under acidic conditions in a motility assay. Am J Physiol 300:R1401–R1408

    CAS  Google Scholar 

  21. Debold EP, Walcott S, Woodward M, Turner MA (2013) Direct observation of phosphate inhibiting the force-generating capacity of a miniensemble of myosin molecules. Biophys J 105:2374–2384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. De La Cruz EM, Wells AL, Sweeney HL, Ostap ME (2000) Actin and light chain isoform dependence of myosin V kinetics. Biochemistry 39:14196–14202

    Article  CAS  Google Scholar 

  23. Fitts RH (1994) Cellular mechanisms of muscle fatigue. Physiol Rev 74:49–94

    Article  CAS  PubMed  Google Scholar 

  24. Fitts RH (2016) The role of acidosis in fatigue: pro perspective. Med Sci Sports Exerc 48:2335–2338

    Article  PubMed  Google Scholar 

  25. Harris DE, Warshaw DM (1993) Smooth and skeletal muscle myosin both exhibit low duty cycles at zero load in vitro. J Biol Chem 268:14764–14768

    CAS  PubMed  Google Scholar 

  26. Hibberd MG, Dantzig JA, Trentham DR, Goldman YE (1985) Phosphate release and force generation in skeletal muscle fibers. Science 228:1317–1319

    Article  CAS  PubMed  Google Scholar 

  27. Homsher E, Wang F, Sellers JR (1992) Factors affecting movement of F-actin filaments propelled by skeletal muscle heavy meromyosin. Am J Physiol 262:C714–C723

    Article  CAS  PubMed  Google Scholar 

  28. Kad NM, Patlak JB, Fagnant PM, Trybus KM, Warshaw DM (2007) Mutation of a conserved glycine in the SH1-SH2 helix affects the load-dependent kinetics of myosin. Biophys J 92:1623–1631

    Article  CAS  PubMed  Google Scholar 

  29. Karatzaferi C, Adamek N, Geeves MA (2017) Modulators of actin-myosin dissociation: basis for muscle type functional differences during fatigue. Am J Physiol 313:C644–C654

    Article  CAS  Google Scholar 

  30. Karatzaferi C, Franks-Skiba K, Cooke R (2008) The inhibition of shortening velocity of skinned skeletal muscle fibers in conditions that mimic fatigue. Am J Physiol 294:R948–R955

    CAS  Google Scholar 

  31. Knuth ST, Dave H, Peters JR, Fitts RH (2006) Low cell pH depresses peak power in rat skeletal muscle fibres at both \(30^{\circ }\)C and \(15^{\circ }\)C: implications for muscle fatigue. J Physiol 575:887–899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kovács M, Tóth J, Hetényi C, Málnási-Csizmadia A, Sellers JR (2004) Mechanism of blebbistatin inhibition of myosin II. J Biol Chem 279:35557–35563

    Article  CAS  PubMed  Google Scholar 

  33. Lamb GD, Stephenson DG, Bangsbo J, Juel C (2006) Point:counterpoint: lactic acid accumulation is an advantage/disadvantage during muscle activity. J Appl Physiol 100:1410–1412

    Article  CAS  PubMed  Google Scholar 

  34. Linari M, Caremani M, Lombardi V (2010) A kinetic model that explains the effect of inorganic phosphate on the mechanics and energetics of isometric contraction of fast skeletal muscle. Proc R Soc B Biol Sci 277:19–27

    Article  CAS  Google Scholar 

  35. Llinas P, Isabet T, Song L, Ropars V, Zong B, Benisty H, Sirigu S, Morris C, Kikuti C, Safer D, Sweeney HL, Houdusse H (2015) How actin initiates the motor activity of myosin. Dev Cell 33:401–412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Longyear T, Walcott S, Debold EP (2017) The molecular basis of thin filament activation: from single molecule to muscle. Sci Rep 7:1822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lymn RW, Taylor EW (1971) Mechanism of adenosine triphosphate hydrolysis by actomyosin. Biochemistry 10:4617–4624

    Article  CAS  PubMed  Google Scholar 

  38. Margossian SS, Lowey S (1982) Preparation of myosin and its subfragments from rabbit skeletal muscle. Methods Enzymol 85:55–71

    Article  CAS  PubMed  Google Scholar 

  39. Mijailovich SM, Kayser-Herold O, Stojanovic B, Nedic D, Irving TC, Geeves MA (2016) Three-dimensional stochastic model of actin-myosin binding in the sarcomere lattice. J Gen Physiol 148:459–488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Muretta J, Rohde JA, Johnsrud DO, Cornea S, Thomas DD (2015) Direct real-time detection of the structural and biochemical events in the myosin power stroke. Proc Natl Acad Sci 112:14272–14277

    Article  CAS  PubMed  Google Scholar 

  41. Nelson CR, Debold EP, Fitts RH (2014) Phosphate and acidosis act synergistically to depress peak power in rat muscle fibers. Am J Physiol 307:C939–C950

    Article  CAS  Google Scholar 

  42. Nosek TM, Fender KY, Godt RE (1987) It is diprotonated inorganic phosphate that depresses force in skinned skeletal muscle fibers. Science 10:191–193

    Article  Google Scholar 

  43. Pastra-Landis SC, Huiatt T, Lowey S (1983) Assembly and kinetic properties of myosin light chain isozymes from fast skeletal muscle. J Mol Biol 170:403–422

    Article  CAS  PubMed  Google Scholar 

  44. Pate E, Bhimani M, Franks-Skilba K, Cooke R (1995) Reduced effect of pH on skinned rabbit psoas muscle mechanics at high temperatures: implications for fatigue. J Physiol 486:689–694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Pate E, Cooke R (1989) A model of crossbridge action: the effects of ATP, ADP and \(\rm P_{{\rm i}}\). J Musc Res Cell Motil 10:181–196

    Article  CAS  Google Scholar 

  46. Pederson TH, Nielson OB, Lamb GD, Stephenson DG (2004) Intracellular acidosis enhances the excitability of working muscle. Science 305:1144–1147

    Article  CAS  Google Scholar 

  47. Potma EJ, vanGraas IA, Stienen GJ (1995) Influence of inorganic phosphate and pH on ATP utilization in fast and slow skeletal muscle fibers. Biophys J 69:2580–2589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Previs MJ, Previs SB, Gulick J, Robbins J, Warshaw DM (2012) Molecular mechanics of cardiac myosin-binding protein C in native thick filaments. Science 337:1215–1218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Robergs RA, Ghiasvand F, Parker D (2004) Biochemistry of exercise-induced metabolic acidosis. Am J Physiol 287:R502–R516

    CAS  Google Scholar 

  50. Siemankowski RF, Wiseman WO, White HD (1985) ADP dissociation from actomyosin subfragment 1 is sufficiently slow to limit the unloaded shortening velocity in vertebrate muscle. Proc Natl Acad Sci 82:658–662

    Article  CAS  PubMed  Google Scholar 

  51. Smith DA (2014) A new mechanochemical model for muscle, where force and movement are triggered by phosphate release. J Musc Res Cell Motil 35:295–306

    Article  CAS  Google Scholar 

  52. Spudich JA, Watt S (1971) The regulation of rabbit skeletal muscle contraction. I. Biochemical studies of the interaction of the tropomyosin-troponin complex with actin and the proteolytic fragments of myosin. J Biol Chem 246:4866–4871

    CAS  PubMed  Google Scholar 

  53. Stoecker U, Telley IA, Stüssi E, Denoth J (2009) A multisegmental cross-bridge kinetics model of the myofibril. J Theor Biol 259:714–726

    Article  CAS  PubMed  Google Scholar 

  54. Tanner BCW, Daniel TL, Regnier M (2007) Sarcomere lattice geometry influences cooperative myosin binding in muscle. PLoS Comput Biol 3:e115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Tanner BCW, Daniel TL, Regnier M (2012) Filament compliance influences cooperative activation of thin filaments and the dynamics of force production in skeletal muscle. PLoS Comput Biol 8:e1002506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Tyska MJ, Depuis DE, Guilford WH, Patlak JB, Waller GS, Trybus KM, Warshaw DM, Lowey S (1999) Two heads of myosin are better than one for generating force and motion. Proc Natl Acad Sci 96:4402–4407

    Article  CAS  PubMed  Google Scholar 

  57. Uyeda TQP, Kron SJ, Spudich JA (1990) Myosin step size: estimation from slow sliding movement of actin over low densities of heavy meromyosin. J Mol Biol 214:699–710

    Article  CAS  PubMed  Google Scholar 

  58. Veigel C, Molloy JE, Schmitz S, Kendrick-Jones J (2003) Load-dependent kinetics of force production by smooth muscle myosin measured with optical tweezers. Nat Cell Bio 5:980–986

    Article  CAS  Google Scholar 

  59. Walcott S, Sun SX (2009) Hysteresis in cross-bridge models of muscle. Phys Chem Chem Phys 11:4871–4881

    Article  CAS  PubMed  Google Scholar 

  60. Walcott S, Warshaw DM, Debold EP (2012) Mechanical coupling between myosin molecules causes differences between ensemble and single-molecule measurements. Biophys J 103:501–510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Webb MR, Hibberd MG, Goldman YE, Trentham DR (1986) Oxygen exchange between Pi in the medium and water during ATP hydrolysis mediated by skinned fibers from rabbit skeletal muscle. Evidence for Pi binding to a force-generating state. J Biol Chem 261:15557–15564

    CAS  PubMed  Google Scholar 

  62. Westerblad H (2016) Acidosis is not a significant cause of skeletal muscle fatigue. Med Sci Sports Exerc 48:2339–2342

    Article  PubMed  Google Scholar 

  63. Westerblad H, Bruton JD, Lännergren J (1997) The effect of intracellular pH on contractile function of intact, single fibres of mouse muscle declines with increasing temperature. J Physiol 500:193–204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. White HD, Taylor EW (1976) Energetics and mechanism of actomyosin adenosine trophosphatase. Biochemistry 15:5818–5826

    Article  CAS  PubMed  Google Scholar 

  65. Widrick JJ, Trappe SW, Costill DL, Fitts RH (1996) Force-velocity and force-power properties of single muscle fibers from elite master runners and sedentary men. Am J Physiol 271:C676–C683

    Article  CAS  PubMed  Google Scholar 

  66. Wilson JR, McCully KK, Mancini DM, Boden B, Chance B (1988) Relationship of muscular fatigue to pH and diprotonated \(\text{ P }_{{\rm i}}\) in humans: a \({}^{31}\)P-NMR study. J Appl Physiol 64:2333–2339

    Article  CAS  PubMed  Google Scholar 

  67. Woodward M, Debold EP (2018) Acidosis and phosphate directly reduce myosin’s force-generating capacity through distinct molecular mechanisms. Front Physiol 9:862

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was funded by the National Science Foundation (DMS-1413185).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sam Walcott.

Additional information

This work is supported, in part, by NSF DMS-1413185 to SW.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 3272 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jarvis, K., Woodward, M., Debold, E.P. et al. Acidosis affects muscle contraction by slowing the rates myosin attaches to and detaches from actin. J Muscle Res Cell Motil 39, 135–147 (2018). https://doi.org/10.1007/s10974-018-9499-7

Download citation

Keywords

  • Fatigue
  • Optical trap
  • Modeling
  • Phosphate