Skip to main content
Log in

Cloning, molecular characterization, and expression analysis of the unc45 myosin chaperone b(unc45b)gene of grass carp (Ctenopharyngodon idellus)

  • Original Article
  • Published:
Journal of Muscle Research and Cell Motility Aims and scope Submit manuscript

Abstract

Unc45 myosin chaperone b(unc45b)gene is a molecular chaperone that mediates the folding, assembly and accumulation of thick-filament myosin in the formation of sarcomere, which plays an important role in the development of striated muscle and the stability of sarcomere. In this study, the complete cDNA sequence of unc45b gene of grass carp was obtained by rapid amplification of cDNA ends (RACE), and the characteristics of the unc45b protein predicted from gene sequence was analyzed by bioinformatics methods. The differential expression pattern in tissues was also detected by quantitative real-time PCR. The results showed that the full-length of unc45b gene of grass carp is 3163 bp, which contains a 60 bp 5′UTR, a 298 bp 3′UTR, and a 2865 bp open reading frame (ORF) encoding a 934 amino acid peptide. The deduced unc45b protein exhibits a homology of 92, 86, 86 % with the protein of zebrafish (Danio rerio), channel catfish (Ietalurus punctatus) and tilapia (Oreochromis niloticus) respectively, and the protein contains UCS myosin head binding domain and TPR peptide repeat domain. The protein is a hydrophilic and non-secretory protein with a molecular mass and isoeletronic point of 103,699.8 and 7.39 Da. The structural elements of the protein includes α-helixes and loops, and the unc45b gene highly expresses in skeletal muscle and heart in grass carp. This study laid a foundation for further research in explaining the myofibril accumulation in crisped grass carp.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ao W, Pilgrim D (2000) Caenorhabditis elegans UNC-45 is a component of muscle thick filaments and colocalizes with myosin heavy chain B, but not myosin heavy chain A. J Cell Biol 148(2):375–384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barral JM, Bauer CC, Ortiz I et al (1998) UNC-45 mutations in Caenorhabditis elegans implicate a CRO1/She4p-like domain in myosin assembly. J Cell Biol 143(5):1215–1225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barral JM, Epstein HF, Hutagalung AH et al (2002) Role of the myosin assembly protein UNC-45 as a molecular chaperone for myosin. Science 295(5555):669–671

    Article  CAS  PubMed  Google Scholar 

  • Bendtsen JD, Nielsen H, Heijne GV et al (2004) Improved prediction of signal peptides: Signal P 3.0. J Mol Biol 340:783–795

    Article  PubMed  Google Scholar 

  • Bernick EP, Zhang PJ, Du SJ (2010) Knockdown and overexpression of Unc-45b result in defective myofibril organization in skeletal muscles of zebrafish embryos. BMC Cell Biol 11(6):1107–1121. doi:10.1186/1471-2121-11-70

    Google Scholar 

  • Biasini M, Bienert S, Waterhouse A et al (2014) SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Res 42(W1):252–258. doi:10.1093/nar/gku340

    Article  Google Scholar 

  • Comyn SA, Pilgrim D (2012) Lack of developmental redundancy between UNC45 proteins in zebrafish muscle development. PLoS One 7(11):3725–3744. doi:10.1371/journal.pone.0048861

    Article  Google Scholar 

  • Du SJ, Li H, Bian YH et al (2008) Heat-shock protein 901 is required for organized myofibril assembly in skeletal muscles of zebrafish embryos. PNAS Proc Natl Acad Sci USA 105(2):554–559. doi:10.1073/pnas.0707330105

    Article  CAS  Google Scholar 

  • Epstein HF, Thomson JN (1974) Temperature-sensitive mutation affecting myofilament assembly in Caenorhabditis elegans. Nature 250:579–580

    Article  CAS  PubMed  Google Scholar 

  • Etard C, Behra M, Fischer N et al (2007) The UCS factor Steif/Unc-45b interacts with the heat shock protein Hsp90αduring myofirillogenesis. Dev Biol 308(1):133–143. doi:10.1016/j.ydbio.2007.05.014

    Article  CAS  PubMed  Google Scholar 

  • Etard C, Roostalu U, Strähle U (2008) Shuttling of the chaperones UNC45B and Hsp90αbetween the A band and the Z line of the myofiril. J Cell Biol 180(6):1163–1175. doi:10.1083/jcb.200709128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Finn RD, Mistry J, Tate J, Coggill P, Heger A, Pollington JE, Holm L (2010) The Pfam protein families database. Nucleic Acids Res 38(suppl 1):D211–D222

    Article  CAS  PubMed  Google Scholar 

  • Gasteriger E, Gattiker A, Hoogland C et al (2003) ExPASy: the proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Res 31(13):3784–3788. doi:10.1093/nar/gkg563

    Article  Google Scholar 

  • Gazda L, Pokrzywa W, Hellerschmied D (2013) The myosin chaperone UNC-45 is organized in tandem modules to support myofilament formation in C. elegans. Cell 152(1–2):183–195. doi:10.1016/j.cell.2012.12.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guan L, Zhu RJ, Li XQ, Leng XJ (2011) Muscle characteristics comparison between grass carp and crisped grass carp. J Shanghai Fish Univ 20(5):748–753

    Google Scholar 

  • Hawkins TA, Haramis AP, Etard C et al (2008) The ATPase-dependent chaperoning activity of Hsp90αregulates thick filament formation and integration during skeletal muscle myofibrillogenesis. Development 135(6):1147–1156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoppe T, Cassata G, Barral JM et al (2004) Regulation of the myosin-directed chaperone UNC-45 by a novel E3/E4-multiubiquitylation complex in C. elegans. Cell 118(3):337–349

    Article  CAS  PubMed  Google Scholar 

  • Hubbers CU, Clemen CS, Kesper K et al (2007) Pathological consequences of VCP mutations on human striated muscle. Brain 130(2):381–393. doi:10.1093/brain/awl238

    Article  PubMed  Google Scholar 

  • Hutagalung AH, Landsverk ML, Price MG et al (2002) The UCS family of myosin chaperones. J Cell Sci 115(21):3983–3990. doi:10.1242/jcs.00107

    Article  CAS  PubMed  Google Scholar 

  • Janiesch PC, Kim J, Mouysset J et al (2007) The ubiquitin-selective chaperone CDC-48/p97 links myosin assembly to human myopathy. Nat Cell Biol 9(4):379–390. doi:10.1038/ncb1554

    Article  CAS  PubMed  Google Scholar 

  • Landsverk ML, Li S, Hutagalung AH et al (2007) The UNC-45 chaperone mediates sarcomere assembly through myosin degradation in Caenorhabditis elegans. J Cell Biol 177(2):205–210. doi:10.1083/jcb.200607084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee CF, Hauenstein A, Fleming J et al (2011) X-ray crystal structure of the UCS domain-containing UNC-45 myosin chaperone from Drosophila melanogaster. Structure 19(3):397–408. doi:10.1016/j.str.2011.01.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee CF, Melkani GC, Bernstein SI (2014) The UNC-45 myosin chaperone: from worms to flies to vertebrates. Int Rev Cell Mol Biol 313:103–144. doi:10.1016/B978-0-12-800177-6.00004-9

    Article  PubMed  PubMed Central  Google Scholar 

  • Li BS, Leng XJ, Li XQ et al (2008) Effects of feeding broad bean on growth, muscle composition and intestine protease activity of diferent sizes of grass carp Ctenopharyngodon idella. J Shanghai Fish Univ 17(3):310–315

    CAS  Google Scholar 

  • Li ZM, Leng XJ, Li XQ et al (2012) The growth performance, meat quality, serum biochemical indexes and digestive enzyme activity analysis of crisped grass carp. Jiangsu Agric Sci 40(3):186–189

    Google Scholar 

  • Lin WL, Zeng QX, Zhu ZW (2009) Different changes in mastication between crisp grass carp (Ctenopharyngodon idellus C.et V) and grass carp (Ctenopharyngodon idellus) after heating: the relationship between texture and ultrastructure in muscle tissue. Food Res Int 42(2):271–278

    Article  Google Scholar 

  • Linke WA (2008) Sense and stretchability: the role of titin and titin-associated proteins in myocardial stress-sensing and mechanical dysfunction. J Cardiovasc Res 77(4):637–648. doi:10.1016/j.cardiores.2007.03.029

    CAS  Google Scholar 

  • Lun F, Leng XJ, Li XQ et al (2008) Effect of feeding broad bean on growth and flesh quality of grass carp (Ctenopharyngodon idella). Freshw Fish 38(3):73–76

    Google Scholar 

  • Petersen TN, Brunak S, Von HG et al (2011) SIGNALP 4.0: discriminating signal peptides from transmembrane regions. Nat Med 8(10):785–786

  • Price MG, Landsverk ML, Barral JM et al (2002) Two mammalian UNC-45 isoforms are related to distinct cytoskeletal and musclespecific functions. J Cell Sci 115 (Pt 21):4013–4023. doi:10.1242/jcs.00108

    Article  CAS  PubMed  Google Scholar 

  • Rost B, Yachdav G, Liu J (2004) The predictprotein server. Nucleic Acids Res 32(suppl 2):W321–W326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rutherford S, Knapp JR, Csermely P et al (2007) Hsp90 and developmental networks. J Csermely P. Adv Exp Med Biol 594:190–197

    Article  PubMed  Google Scholar 

  • Shi H, Blobel G (2010) UNC-45/CRO1/She4p (UCS) protein forms elongated dimer and joins two myosin heads near their actin binding region. Proc Natl Acad Sci USA 107(50):21382–21387. doi:10.1073/pnas.1013038107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Srikakulam R, Winkelmann DA (2004) Chaperone-mediated folding and assembly of myosin in striated muscle. J Cell Sci 117(Pt 4):641–652

    Article  CAS  PubMed  Google Scholar 

  • Venolia L, Ao W, Kim S et al (1999) unc-45 gene of Caenorhabditis elegans, encodes a muscle-specific tetratricopeptide repeat-containing protein. Cell Motil Cytoskel 42(3):163–177. doi:10.1002/(SICI)1097-0169

    Article  CAS  Google Scholar 

  • Wohlgemuth SL, Crawford BD, Pilgrim DB (2007) The myosin cochaperone UNC-45 is required for skeletal and cardiac muscle function in zebrafih. Dev Biol 303(2):483–492. doi:10.1016/j.ydbio.2006.11.027

    Article  CAS  PubMed  Google Scholar 

  • Yuan XC, Zhao WW (eds) (2015) Yearbook of China fishery statistics. Bei Jing, China

    Google Scholar 

Download references

Acknowledgments

The project was supported by the Science and Technology Commission of the Shanghai Municipality (No. 13ZR1419600), the Hydrobiological Project of Shanghai Leading Academic Discipline (S30701), the Shanghai Educational Development Foundation (06KZ002), the Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources of the Ministry of Agriculture, the Key Laboratory of Aquatic Genetic Resources and Utilization of the Ministry of Agriculture, an open research fund at Shanghai Ocean University (KFT2008-6), a planting research open research fund at the South China Sea Fishery Research Institute (2008A003), the Shanghai aquatic fishery key project (No. Y1101).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiang-Jun Leng or Xiao-Qin Li.

Additional information

Xiang-Jun Leng and Xiao-Qin Li are contributed equally to this work and should be considered co-corresponding authors.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 797 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, J., Guo, T., Pan, WQ. et al. Cloning, molecular characterization, and expression analysis of the unc45 myosin chaperone b(unc45b)gene of grass carp (Ctenopharyngodon idellus). J Muscle Res Cell Motil 37, 71–81 (2016). https://doi.org/10.1007/s10974-016-9445-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10974-016-9445-5

Keywords

Navigation