Skip to main content

Advertisement

Log in

What has the mdx mouse model of duchenne muscular dystrophy contributed to our understanding of this disease?

  • Review
  • Published:
Journal of Muscle Research and Cell Motility Aims and scope Submit manuscript

Abstract

Duchenne muscular dystrophy (DMD) is a fatal X-chromosome linked recessive disorder caused by the truncation or deletion of the dystrophin gene. The most widely used animal model of this disease is the dystrophin-deficient mdx mouse which was first discovered 30 years ago. Despite its extensive use in DMD research, no effective treatment has yet been developed for this devastating disease. This review explores what we have learned from this mouse model regarding the pathophysiology of DMD and asks if it has a future in providing a better more thorough understanding of this disease or if it will bring us any closer to improving the outlook for DMD patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

Ca2+ :

Calcium

CRF:

Corticotrophin releasing factor

CRFR:

CRF receptor

CRP:

C-reactive protein

GI:

Gastrointestinal

HPA:

Hypothalamic-pituitary-adrenal

IL:

Interleukin

IL-6R:

Interleukin-6 receptor

TTX:

Tetrodotoxin

xIL-6R:

Anti-IL-6R

GRMD:

Golden retriever muscular dystrophy

DAPC:

Dystrophin associated protein complex

ECG:

Electrocardiogram

ACE:

Angiotensin-converting enzyme

References

  • Abdel-Salam E, Abdel-Meguid I, Korraa SS (2009) Markers of degeneration and regeneration in duchenne muscular dystrophy. Acta Myol 28(3):94–100

    PubMed Central  CAS  PubMed  Google Scholar 

  • Abresch R, Seyden N, Wineinger M (1998) Quality of life. Issues for persons with neuromuscular diseases. Phys Med Rehabil Clin N Am 9(1):233–248

    CAS  PubMed  Google Scholar 

  • Andreetta F et al (2003) Immunomodulation of TGF-beta1 in mdx mouse inhibits connective tissue proliferation in diaphragm but increases inflammatory response: implications for antifibrotic therapy. J Neuroimmunol, 15(5), p. II

  • Anderson J, Weber M, Vargas C (2000) Deflazacort increases laminin expression and myogenic repair, and induces early persistant functional gain in mdx mouse muscular dystrophy. Cell Transpl 9(4):551–564

    CAS  Google Scholar 

  • Aoki Y et al (2012) Bodywide skipping of exons 45–55 in dystrophic mdx52 mice by systemic antisense delivery. Proc Natl Acad Sci USA 109(34):13763–13768

    PubMed Central  CAS  PubMed  Google Scholar 

  • Arakia E et al (1997) Targeted disruption of exon 52 in the mouse dystrophin gene induced muscle degeneration similar to that observed in Duchenne muscular dystrophy. Biochem Biophys Res Commun 238(2):492–497

    Google Scholar 

  • Archer JD, Vargas CC, Anderson JE (2006) Persistent and improved functional gain in mdx dystrophic mice after treatment with l-arginine and deflaxacort. FASEB J 24:1–24

    Google Scholar 

  • Arechavala-Gomeza V et al (2010) Revertant fibres and dystrophin traces in duchenne muscular dystrophy: implication for clinical trials. Neuromuscul Disord 20(5):295–301

    PubMed  Google Scholar 

  • Asai A et al (2007) Primary role of functional ischemia, quantitative evidence for the two-hit mechanism, and phosphodiesterase-5 inhibitor therapy in mouse muscular dystrophy. PLoS ONE 2(8):e806

    PubMed Central  PubMed  Google Scholar 

  • Baccari M et al (2007) Reversal by relaxin of altered ileal spontaneous contractions in dystrophic (mdx) mice through a nitric oxide-mediated mechanism. Am J Physiol—Regul, Integr Comp Physiol 293:R662–R668

    CAS  Google Scholar 

  • Baltgalvis KA et al (2009) The effects of prednisolone on skeletal muscle contractility in mdx mice. Muscle Nerve 40(3):443–454

    PubMed Central  CAS  PubMed  Google Scholar 

  • Barohn RJ et al (1988) Gastric hypomotility in duchenne’s muscular dystrophy. N Engl J Med 319:15–18

    CAS  PubMed  Google Scholar 

  • Barohn R, Amato A, Griggs R (1998) Overview of distal myopathies: from the clinical to the molecular. Neuromuscul Disord 8(5):309–316

    CAS  PubMed  Google Scholar 

  • Bates G et al (2013) Molecular, cellular, and muscle strip mechanics of the mdx mouse diaphragm. Am J Physiol Cell Physiol 304(9):C873–C880

    CAS  PubMed  Google Scholar 

  • Baydur A et al (1990) Decline in respiratory function and experience with long-term assisted ventilation in advanced duchenne’s muscular dystophy. Chest 97(4):884–889

    CAS  PubMed  Google Scholar 

  • Beck J et al (2006) Diaphragmatic function in advanced duchenne muscular dystrophy. Neuromuscul Disord 16:161–167

    PubMed  Google Scholar 

  • Bia B et al (1999) Decreased myocardial nNOS, increased iNOS and abnormal ECGs in mouse models of duchenne muscular dystrophy. J Mol Cell Cardiol 31(10):1857–1862

    CAS  PubMed  Google Scholar 

  • Blake D, Tinsley J, Davies K (1996) Utrophin: a structural and functional comparison to dystrophin. Brain Pathol 6(1):37–47

    CAS  PubMed  Google Scholar 

  • Bonuccelli G et al (2003) Proteasome inhibitor (MG-132) treatment of mdx mice rescues the expression and membrane localization of dystrophin and dystrophin-associated proteins. Am J Pathol 163(4):1663–1675

    PubMed Central  CAS  PubMed  Google Scholar 

  • Borrelli O et al (2005) Evolution of gastric electrical features and gastric emptying in children with duchenne and becker muscular dystrophy. Am J Gastroenterol 100(3):695–702

    PubMed  Google Scholar 

  • Bothwell JE et al (2002) Duchenne muscular dystrophy-parental perceptions. Clin Pediatr 41(2):105–109

    CAS  Google Scholar 

  • Brunelli S et al (2007) Nitric oxide release combined with nonsteroidal antiinflammatory activity prevents muscular dystrophy pathology and enhances stem cell therapy. Proc Natl Acad Sci USA 104(1):264–269

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bulfield G (1984) X chromosome-linked muscular dystrophy. Proc Natl Acad Sci USA 81:1189–1192

    PubMed Central  CAS  PubMed  Google Scholar 

  • Byers TJ, Kunkel LM, Watkinst SC (1991) The subcellular distribution of dystrophin in mouse skeletal, cardiac, and smooth muscle. J cell Biol 115(2):411–421

    CAS  PubMed  Google Scholar 

  • Campbell K et al (2010) Revertant muscle fibers expressing dystrophin do not tolerize the immune system in duchenne muscular dystrophy: lessons learned from a Phase I clinical trial. J Immunol 184:96–99

    Google Scholar 

  • Carlson CG, Samadi A, Siegel A (2005) Chronic treatment with agents that stabilize cytosolic IkappaB-alpha enhances survival and improves resting membrane potential in MDX muscle fibers subjected to chronic passive stretch. Neurobiol Dis 20(3):719–730

    CAS  PubMed  Google Scholar 

  • Cirak S et al (2011) Exon skipping and dystrophin restoration in patients with duchenne muscular dystrophy after systemic phosphorodiamidate morpholino oligomer treatment: an open-label, phase 2, dose-escalation study. Lancet 378(9791):595–605

    PubMed Central  CAS  PubMed  Google Scholar 

  • Collins CA, Morgan JE (2003) Duchenne’s muscular dystrophy: animal models used to investigate pathogenesis and develop therapeutic strategies. Int J Exp Pathol 84(4):165–172

    PubMed Central  CAS  PubMed  Google Scholar 

  • Compton A et al (2005) The syntrophin-dystrobrevin subcomplex in human neuromuscular disorders. J Neuropathol Exp Neurol 64(4):350–361

    CAS  PubMed  Google Scholar 

  • Connor TJ, Leonard BE (1998) Depression, stress and immunological activation the role of cytokines in depressive disorders. Life Sci 62(7):583–606

    CAS  PubMed  Google Scholar 

  • Coulton G et al (1988) The mdx mouse skeletal muscle myopathy: II Contractile properties. Neuropathol Appl Neurobiol 14(4):299–314

    CAS  PubMed  Google Scholar 

  • Cozzoli A et al (2011) Evaluation of potential synergistic action of a combined treatment with alpha-methyl-prednisolone and taurine on the mdx mouse model of duchenne muscular dystrophy. Neuropathol Appl Neurobiol 37(3):243–256

    CAS  PubMed  Google Scholar 

  • Cros D et al (1989) Muscle hypertrophy in duchenne muscular dystrophy. J Neurol 236(1):43–47

    CAS  PubMed  Google Scholar 

  • Dangain J, Vrbova G (1984) Muscle development in mdx mutant mice. Muscle Nerve 7(9):700–704

    CAS  PubMed  Google Scholar 

  • Davies KE, Nowak KJ (2006) Molecular mechanisms of muscular dystrophies: old and new players. Nat Rev Mol Cell Biol 7(10):762–773

    CAS  PubMed  Google Scholar 

  • De Bruin P et al (1997) Diaphragm thickness and inspiratory strength in patients with duchenne muscular dystrophy. Thorax 52:472–475

    PubMed Central  PubMed  Google Scholar 

  • Deconinck N, Dan B (2007) Pathophysiology of duchenne muscular dystrophy: current hypotheses. Pediatr Neurol 36(1):1–7

    PubMed  Google Scholar 

  • Deconinck AE et al (1997) Utrophin-dystrophin-deficient mice as a model for duchenne muscular dystrophy. Cell 90(4):717–727

    CAS  PubMed  Google Scholar 

  • Di Certo MG et al (2010) The artificial gene Jazz, a transcriptional regulator of utrophin, corrects the dystrophic pathology in mdx mice. Hum Mol Genet 19(5):752–760

    PubMed  Google Scholar 

  • Dinan D et al (2003) Gastric wall weakening resulting in separate perforations in a patient with duchenne’ s muscular dystrophy. Am J Roentgenol 181:807–808

    Google Scholar 

  • Du Y et al (2013) Sputum Interleukin-6, tumor necrosis factor-α and salivary cortisol as new biomarkers of depression in lung cancer patients. Progress Neuro-Psychopharmacol Biol Psychiatr 47:69–76

    CAS  Google Scholar 

  • Duboc D et al (2007) Perindopril preventive treatment on mortality in duchenne muscular dystrophy 10 years’ follow-up. Am Heart J 154(3):596–602

    CAS  PubMed  Google Scholar 

  • Ebihara S et al (2000) Differential effects of dystrophin and utrophin gene transfer in immunocompetent muscular dystrophy (mdx) mice. Physiol Genomics 8(3):133–144

    Google Scholar 

  • Engel WK, Hawley RJ (1977) Focal lesions of muscle in peripheral vascular disease. J Neurol 215(3):161–168

    CAS  PubMed  Google Scholar 

  • Ennen JP, Verma M, Asakura A (2013) Vascular-targeted therapies for duchenne muscular dystrophy. Skelet Muscle 3(9):1–12

    Google Scholar 

  • Ervasti JM, Campbell KP (1991) Membrane organization of the dystrophin-glycoprotein complex. Cell 66(6):1121–1131

    CAS  PubMed  Google Scholar 

  • Fall AM et al (2006) Induction of revertant fibres in the mdx mouse using antisense oligonucleotides. Genetic Vaccines Ther 4:3

  • Fitzpatrick C, Barry C, Garvey C (1986) Psychiatric disorder among boys with duchenne muscular dystrophy. Dev Med Child Neurol 28(5):589–595

    CAS  PubMed  Google Scholar 

  • Fletcher S et al (2006) Dystrophin expression in the mdx mouse after localised and systemic administration of a morpholino antisense oligonucleotide. J Gene Med 8(2):207–216

    CAS  PubMed  Google Scholar 

  • Fong P et al (1990) Increased activity of calcium leak channels in myotubes of duchenne human and mdx mouse origin. Science 250(4981):673–676

    CAS  PubMed  Google Scholar 

  • Forbes SC et al (2014) Magnetic resonance imaging and spectroscopy assessment of lower extremity skeletal muscles in boys with Duchenne muscular dystrophy: a multicenter cross sectional study. PLoS ONE 9(9):e106435

    PubMed Central  PubMed  Google Scholar 

  • Fraysse B et al (2004) The alteration of calcium homeostasis in adult dystrophic mdx muscle fibers is worsened by a chronic exercise in vivo. Neurobiol Dis 17(2):144–154

    CAS  PubMed  Google Scholar 

  • Garrood P et al (2009) MR imaging in duchenne muscular dystrophy quantification of T1-weighted signal, contrast uptake, and the effects of exercise. J Magn Reson Imaging 30(5):1130–1138

    PubMed  Google Scholar 

  • Gehrig SM et al (2008) Insulin-like growth factor-I analogue protects muscles of dystrophic mdx mice from contraction-mediated damage. Exp Physiol 93(11):1190–1198

    CAS  PubMed  Google Scholar 

  • Gerber AR, Bale TL (2012) Antiinflammatory treatment ameliorates HPA stress axis dysfunction in a mouse model of stress sensitivity. Endocrinology 153(10):4830–4837

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gilbert RÉN et al (1999) Adenovirus-mediated utrophin gene transfer mitigates the dystrophic phenotype of mdx mouse muscles. Hum Gene Ther 10(8):1299–1310

    CAS  PubMed  Google Scholar 

  • Glaser R, Kiecolt-glaser JK (2005) Stress-induced immune dysfunction : implications for health. Nat Rev Immunol 5:243–251

    CAS  PubMed  Google Scholar 

  • Goemans NM et al (2011) Systemic Administration of PRO051 in duchenne’s muscular dystrophy. New Engl J Med 364(16):1513–1522

  • Gosselin LE, Williams JE (2006) Pentoxifylline fails to attenuate fibrosis in dystrophic (mdx) diaphragm muscle. Muscle Nerve 33(6):820–823

    CAS  PubMed  Google Scholar 

  • Goyenvalle A et al (2004) Rescue of dystrophic muscle through U7 snRNA-mediated exon skipping. Sci (N.Y.) 306(5702):1796–1799

    CAS  Google Scholar 

  • Grange RW (2011) Green tea extract decreases muscle pathology and NF-κB immunostaining in regenerating muscle fibers of mdx mice. Clin Nutr 29(3):391–398

    Google Scholar 

  • Gregorevic P et al (2006) rAAV6-microdystrophin preserves muscle function and extends lifespan in severely dystrophic mice. Nat Med 12(7):787–789

    PubMed Central  CAS  PubMed  Google Scholar 

  • Grounds MD et al (2008) Towards developing standard operating procedures for pre- clinical testing in the mdx mouse model of duchenne muscular dystrophy. Neurobiol Dis 31(1):1–19

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gumerson JD, Michele DE (2011) The dystrophin-glycoprotein complex in the prevention of muscle damage. J Biomed Biotechnol 2011:1–13

    Google Scholar 

  • Heenskerk et al (2009) In vivo comparison of 2 -O-methyl phosphorothioate and morpholino antisense oligonucleotides for Duchenne muscular dystrophy exon skipping. J Gene Med 11:257–266

  • Hoen PA t et al (2006) Gene expression profiling to monitor therapeutic and adverse effects of antisense therapies for duchenne muscular dystrophy. Pharmacogenomics 7(3):281–297

    PubMed  Google Scholar 

  • Hoffman EP et al (1990) Somatic reversion/suppression of the mouse mdx phenotype in vivo. J Neurol Sci 99(1):9–25

    CAS  PubMed  Google Scholar 

  • Huang P et al (2009) Imatinib attenuates skeletal muscle dystrophy in mdx mice. FASEB J 23(8):2539–2548

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ito K et al (2006) Smooth muscle-specific dystrophin expression improves aberrant vasoregulation in mdx mice. Hum Mol Genet 15(14):5–7

    Google Scholar 

  • Jin RC, Loscalzo J (2010) Vascular nitric oxide: formation and function. J Blood Med 2010(1):147–162

    PubMed  Google Scholar 

  • Kaprielian RR et al (2000) Distinct patterns of dystrophin organization in myocyte sarcolemma and transverse tubules of normal and diseased human myocardium. Circulation 100:2586–2594

    Google Scholar 

  • Keep NH (2000) Structural comparison of actin binding in utrophin and dystrophin. Neurological Sci 21(5 Suppl):S929–S937

    CAS  Google Scholar 

  • Khairallah M et al (2007) Metabolic and signaling alterations in dystrophin-deficient hearts precede overt cardiomyopathy. J Mol Cell Cardiol 43(2):119–129

    CAS  PubMed  Google Scholar 

  • Kim J-H et al (2013) Contribution of oxidative stress to pathology in diaphragm and limb muscles with duchenne muscular dystrophy. J Muscle Res Cell Motil 34(1):1–13

    CAS  PubMed  Google Scholar 

  • Kostek M et al (2012) IL-6 signaling blockade increases inflammation but does not improve muscle function in the mdx mouse. BMC Musculoskelet Disord 13(1):106

    PubMed Central  CAS  PubMed  Google Scholar 

  • Krag TOB et al (2004) Heregulin ameliorates the dystrophic phenotype in mdx mice. Proc Natl Acad Sci USA 101(38):13856–13860

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kumar A, Boriek AM (2003) Mechanical stress activates the nuclear factor-kappaB pathway in skeletal muscle fibers: a possible role in duchenne muscular dystrophy. FASEB J 17(3):386–396

    CAS  PubMed  Google Scholar 

  • Lapidos KA, Kakkar R, McNally EM (2004) The dystrophin glycoprotein complex: signaling strength and integrity for the sarcolemma. Circ Res 94(8):1023–1031

    CAS  PubMed  Google Scholar 

  • Larcher T et al (2014) Characterization of dystrophin deficient rats: a new model for duchenne muscular dystrophy. PLoS ONE 9(10):e110371

    PubMed Central  PubMed  Google Scholar 

  • Leon S et al (1986) Chronic intestinal pseudoobstruction as a complication of Duchenne’s muscular dystrophy. Gastroenterology 90(2):455–459

    CAS  PubMed  Google Scholar 

  • Leonard BE, Myint A (2006) Changes in the immune system in depression and dementia: causal or co-incidental effects? Diol Clin Neurosci 8(2):163–174

    Google Scholar 

  • Lim J-H, Kim D-Y, Bang MS (2004) Effects of exercise and steroid on skeletal muscle apoptosis in the mdx mouse. Muscle Nerve 30(4):456–462

    PubMed  Google Scholar 

  • Love D et al (1989) An autosomal transcript in skeletal muscle with homology to dystrophin. Nature 339(6219):55–58

    CAS  PubMed  Google Scholar 

  • Lu QL et al (2003) Functional amounts of dystrophin produced by skipping the mutated exon in the mdx dystrophic mouse. Nat Med 9(8):1009–1014

    CAS  PubMed  Google Scholar 

  • Lu QL et al (2005) Systemic delivery of antisense oligoribonucleotide restores dystrophin expression in body-wide skeletal muscles. Proc Natl Acad Sci USA 102(1):198–203

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lu QL et al (2011) The status of exon skipping as a therapeutic approach to duchenne muscular dystrophy. Mol Ther 19(1):9–15

    PubMed Central  CAS  PubMed  Google Scholar 

  • Maes M (2008) The cytokine hypothesis of depression: inflammation, oxidative & nitrosative stress (IO&NS) and leaky gut as new targets for adjunctive treatments in depression. Neuro Endocrinol Lett 29(3):287–291

    CAS  PubMed  Google Scholar 

  • Malerba A et al (2009) Dosing regimen has a significant impact on the efficiency of morpholino oligomer-induced exon skipping in mdx mice. Hum Gene Ther 20(9):955–965

    CAS  PubMed  Google Scholar 

  • Malpass K (2012) Neuromuscular disease a novel imaging method to quantify low levels of dystrophin in duchenne muscular dystrophy. Nat Rev Neurol 8(120):120

    Google Scholar 

  • Manning J et al (2014) Amitriptyline is efficacious in ameliorating muscle inflammation and depressive symptoms in the mdx mouse model of duchenne muscular dystrophy. Exp Physiol 99(10):1370–1386

    CAS  PubMed  Google Scholar 

  • Manzur A et al (2008) Glucocorticoid corticosteroids for Duchenne muscular dystrophy. Cochrane Database Syst Rev. (1):CD003725. doi:10.1002/14651858.CD003725.pub3.

  • Marques MJ et al (2009) Long-term therapy with deflazacort decreases myocardial fibrosis in mdx mice. Muscle Nerve 40(3):466–468

    CAS  PubMed  Google Scholar 

  • Matsumura K et al (1992) Association of dystrophin-related protein with dystrophin-associated proteins in mdx mouse muscle. Nature 360(6494):588–591

    CAS  PubMed  Google Scholar 

  • Matsumura CY et al (2011) Stretch-activated calcium channel protein TRPC1 is correlated with the different degrees of the dystrophic phenotype in mdx mice. Am J Physiol Cell Physiol 301(6):C1344–C1350

    CAS  PubMed  Google Scholar 

  • Mendell JR et al (2013) Eteplirsen for the treatment of duchenne muscular dystrophy. Ann Neurol 74(5):637–647

    CAS  PubMed  Google Scholar 

  • Messina S et al (2009) Flavocoxid counteracts muscle necrosis and improves functional properties in mdx mice: a comparison study with methylprednisolone. Exp Neurol 220(2):349–358

    CAS  PubMed  Google Scholar 

  • Messina S et al (2011) Activation of NF-kappaB pathway in Duchenne muscular dystrophy: relation to age. Acta Myol 30(1):16–23

    PubMed Central  CAS  PubMed  Google Scholar 

  • Michele DE, Campbell KP (2003) Dystrophin-glycoprotein complex: post-translational processing and dystroglycan function. J Biol Chem 278(18):15457–15460

    CAS  PubMed  Google Scholar 

  • Mizunoya W et al (2011) Nitric oxide donors improve prednisone effects on muscular dystrophy in the mdx mouse diaphragm. Am J Physiol Cell Physiol 300(5):C1065–C1077

    CAS  PubMed  Google Scholar 

  • Moens P, Baatsen PH, Maréchal G (1993) Increased susceptibility of EDL muscles from mdx mice to damage induced by contractions with stretch. J Muscle Res Cell Motil 14(4):446–451

    CAS  PubMed  Google Scholar 

  • Mok E et al (2009) Lack of functional benefit with glutamine versus placebo in duchenne muscular dystrophy: a randomized crossover trial. PLoS ONE 4(5):e5448

    PubMed Central  PubMed  Google Scholar 

  • Mosqueira M et al (2013) Cardiac and respiratory dysfunction in duchenne muscular dystrophy and the role of second messengers. Med Res Revies 33(5):1174–1213

    CAS  Google Scholar 

  • Mulè F, Amato A, Serio R (2010) Gastric emptying, small intestinal transit and fecal output in dystrophic (mdx) mice. J Physiol Sci 60(1):75–79

    PubMed  Google Scholar 

  • Nakae Y et al (2008) Subcutaneous injection, from birth, of epigallocatechin-3-gallate, a component of green tea, limits the onset of muscular dystrophy in mdx mice: a quantitative histological, immunohistochemical and electrophysiological study. Histochem Cell Biol 129(4):489–501

    CAS  PubMed  Google Scholar 

  • Nakae Y et al (2012) Quantitative evaluation of the beneficial effects in the mdx mouse of epigallocatechin gallate, an antioxidant polyphenol from green tea. Histochem Cell Biol 137(6):811–827

    PubMed Central  CAS  PubMed  Google Scholar 

  • Nakamura A, Takeda S (2011) Mammalian models of duchenne muscular Dystrophy: pathological characteristics and therapeutic applications. J Biomed Biotechnol 2011:184393

    PubMed Central  PubMed  Google Scholar 

  • Nicholson LV et al (1993) Functional significance of dystrophin positive fibres in duchenne muscular dystrophy. Arch Dis Child 68(5):632–636

    PubMed Central  CAS  PubMed  Google Scholar 

  • Nigro G et al (1990) The incidence and evolution of cardiomyopathy in duchenne muscular dystrophy. Int J Cardiol 26(3):271–277

    CAS  PubMed  Google Scholar 

  • Olivier MD et al (2006) Green tea extract and its major polyphenol (-)-epigallocatechin gallate improve muscle function in a mouse model for Duchenne muscular dystrophy. Am J Physiol Cell Physiol 290(2):C616–C625

    Google Scholar 

  • Pan Y et al (2008) Curcumin alleviates dystrophic muscle pathology in mdx mice. Mol Cells 25(4):531–537

    CAS  PubMed  Google Scholar 

  • Pastoret C, Sebille A (1995) Mdx mice show progressive weakness and muscle deterioration with age. J Neurol Sci 129(2):97–105

    CAS  PubMed  Google Scholar 

  • Payne ET et al (2006) Nutritional therapy improves function and complements corticosteroid intervention in mdx mice. Muscle Nerve 33(1):66–77

    CAS  PubMed  Google Scholar 

  • Petrof B et al (1993) Dystrophin protects the sarcolemma from stresses developed during muscle contraction. Proc Natl Acad Sci USA 90(8):3710–3714

    PubMed Central  CAS  PubMed  Google Scholar 

  • Pierno S et al (2007) Role of tumour necrosis factor alpha, but not of cyclo-oxygenase-2-derived eicosanoids, on functional and morphological indices of dystrophic progression in mdx mice: a pharmacological approach. Neuropathol Appl Neurobiol 33(3):344–359

    CAS  PubMed  Google Scholar 

  • Porter JD et al (2002) A chronic inflammatory response dominates the skeletal muscle molecular signature in dystrophin-deficient mdx mice. Hum Mol Genet 11(3):263–272

    CAS  PubMed  Google Scholar 

  • Radley HG, Davies MJ, Grounds MD (2008) Reduced muscle necrosis and long-term benefits in dystrophic mdx mice after cV1q (blockade of TNF) treatment. Neuromuscul Disord 18(3):227–238

    PubMed  Google Scholar 

  • Rando TA (2001) The dystrophin–glycoprotein complex, cellular signaling, and the regulation of cell survival in the muscular dystrophies. Muscle Nerve 24(112):1575–1594

    CAS  PubMed  Google Scholar 

  • Reutenauer J et al (2008) Investigation of Debio 025, a cyclophilin inhibitor, in the dystrophic mdx mouse, a model for duchenne muscular dystrophy. Br J Pharmacol 155(4):574–584

    PubMed Central  CAS  PubMed  Google Scholar 

  • Romfh A, McNally EM (2010) Cardiac assessment in duchenne and becker muscular dystrophies. Curr Heart Fail Rep 7(4):212–218

    PubMed  Google Scholar 

  • Rybakova IN et al (2006) Dystrophin and utrophin bind actin through distinct modes of contact. J Biol Chem 281(15):9996–10001

    CAS  PubMed  Google Scholar 

  • Sabharwal R (2014) The link between stress disorders and autonomic dysfunction in muscular dystrophy. Front Physiol 5:25

    PubMed Central  PubMed  Google Scholar 

  • Sali A et al (2012) Glucocorticoid-treated mice are an inappropriate positive control for long-term preclinical studies in the mdx mouse. PLoS ONE 7(4):e34204

    PubMed Central  CAS  PubMed  Google Scholar 

  • Schara U, Mortier W (2001) Long-term steroid therapy in Duchenne muscular dystrophy-positive results versus side effects. J Clin Neuromuscu 2:179–183

    CAS  Google Scholar 

  • Schreiber A et al (1987) Magnetic resonance imaging of children with Duchenne muscular dystrophy. Pediatr Radiol 17:495–497

    CAS  PubMed  Google Scholar 

  • Sekiguchi M et al (2009) A deficit of brain dystrophin impairs specific amygdala GABAergic transmission and enhances defensive behaviour in mice. Brain 132(Pt 1):124–135

    PubMed  Google Scholar 

  • Siegel AL et al (2009) Treatment with inhibitors of the NF-kappaB pathway improves whole body tension development in the mdx mouse. Neuromuscul Disord 19(2):131–139

    PubMed  Google Scholar 

  • Simonds AK et al (1998) Impact of nasal ventilation on survival in hypercapnic duchenne muscular dystrophy. Thorax 53(11):949–952

    PubMed Central  CAS  PubMed  Google Scholar 

  • Smythe GM, White JD (2011) Voluntary wheel running in dystrophin-deficient (mdx) mice: relationships between exercise parameters and exacerbation of the dystrophic phenotype. PLoS Curr, 3, p. RRN1295

  • Spencer MJ, Croal IDE, Tidball JG (1995) Calpains are activated in necrotic fibers from mdx dystrophic mice. J Biol Chem 270(18):10909–10914

    CAS  PubMed  Google Scholar 

  • Spurney CF et al (2009) Dystrophin deficient cardiomyopathy in mouse: expression of Nox4 and Lox are associated with fibrosis and altered functional parameters in the heart. Neuromuscul Disord 18(5):371–381

    Google Scholar 

  • Spurney CF et al (2012) CINRG pilot trial of coenzyme Q10 in steroid treated duchenne muscuar dystophy. Muscle Nerve 44(2):174–178

    Google Scholar 

  • Stedman HH et al (1991) The mdx mouse diaphragm reproduces the degenerative changes of duchenne muscular dystrophy. Nature 352(6335):536–539

    CAS  PubMed  Google Scholar 

  • Stevens ED, Faulkner JA (2000) The capacity of mdx mouse diaphragm muscle to do oscillatory work. J Physiol 522(3):457–466

    PubMed Central  CAS  PubMed  Google Scholar 

  • Stuckey DJ et al (2012) In vivo MRI characterization of progressive cardiac dysfunction in the mdx mouse model of muscular dystrophy. PLoS ONE 7(1):e28569

    PubMed Central  CAS  PubMed  Google Scholar 

  • Tameyasu T, Ogura S, Ogihara K (2004) The effect of e-, i-, and n-nitric oxide synthase inhibition on colonic motility in normal and muscular dystrophy (Mdx) mice. Jpn J Physiol 54(6):555–566

    CAS  PubMed  Google Scholar 

  • Thanh LT et al (1995) Characterization of revertant muscle fibers in Duchenne muscular dystrophy, using exon-specific monoclonal antibodies against dystrophin. Am J Hum Genet 56(3):725–731

    PubMed Central  CAS  PubMed  Google Scholar 

  • Tinsley J et al (1998) Expression of full-length utrophin prevents muscular dystrophy in mdx mice. Nat Med 4(12):1441–1444

    CAS  PubMed  Google Scholar 

  • Tinsley J et al (2014) Future clinical and biomarker development for SMT C1100, the first utrophin modulator to enter clinical trials for duchenne muscular dystrophy (DMD). Neurology (8)82:10

  • Torelli S et al (1999) Expression, regulation and localisation of dystrophin isoforms in human foetal skeletal and cardiac muscle. Neuromuscul Disord 9(8):541–551

    CAS  PubMed  Google Scholar 

  • Turgeman T et al (2008) Prevention of muscle fibrosis and improvement in muscle performance in the mdx mouse by halofuginone. Neuromuscul Disord 18(11):857–868

    PubMed  Google Scholar 

  • Turner P et al (1993) Proteolysis results in altered leak channel kinetics and elevated free calcium in mdx muscle. J Membr Biol 133(3):243–251

    CAS  PubMed  Google Scholar 

  • Vaillend C, Ungerer A (1999) Behavioral characterization of mdx3cv mice deficient in C-terminal dystrophins. Neuromuscul Disord 9(5):296–304

    CAS  PubMed  Google Scholar 

  • Valentine B et al (1992) Canine X-linked muscular dystrophy as an animal model of Duchenne muscular dystrophy: a review. Am J Med Genet 42(3):352–356

    CAS  PubMed  Google Scholar 

  • Vallières L, Rivest S (1999) Interleukin-6 is a needed proinflammatory cytokine in the prolonged neural activity and transcriptional activation of corticotropin-releasing factor during endotoxemia. Endocrinology 140(9):3890–3903

    PubMed  Google Scholar 

  • Van Deutekom JC et al (2007) Local dystrophin restoration with antisense oligonucleotide PRO051. New Engl J Med 357(26):2677–2686

    PubMed  Google Scholar 

  • Van Erp C, Irwin NG, Hoey AJ (2006) Long-term administration of pirfenidone improves cardiac function in mdx mice. Muscle Nerve 34(3):327–334

    PubMed  Google Scholar 

  • Vandebrouck C et al (2002) Involvement of TRPC in the abnormal calcium influx observed in dystrophic (mdx) mouse skeletal muscle fibers. J Cell Biol 158(6):1089–1096

    PubMed Central  CAS  PubMed  Google Scholar 

  • Venihaki M et al (2001) Corticotropin-releasing hormone regulates IL-6 expression during inflammation. J Clin Investig 108(8):1159–1166

    PubMed Central  CAS  PubMed  Google Scholar 

  • Verhaart IEC, Aartsma-Rus A (2012) Gene therapy for duchenne muscular dystrophy. Curr Opin Neurol 25(5):588–596

    CAS  PubMed  Google Scholar 

  • Vilquin JT et al (1998) Evidence of mdx mouse skeletal muscle fragility in vivo by eccentric running exercise. Muscle Nerve 21(5):567–576

    CAS  PubMed  Google Scholar 

  • Viollet L et al (2012) Effects of angiotensin-converting enzyme inhibitors and/or beta blockers on the cardiomyopathy in duchenne muscular dystrophy. Am J Cardiol 110(1):98–102

    CAS  PubMed  Google Scholar 

  • Wagner KR (2008) Approaching a new age in Duchenne muscular dystrophy treatment. Neurotherapeutics 5(4):583–591

    CAS  PubMed  Google Scholar 

  • Wehling-Henricks M, Lee JJ, Tidball JG (2004) Prednisolone decreases cellular adhesion molecules required for inflammatory cell infiltration in dystrophin-deficient skeletal muscle. Neuromuscul Disord 14(8–9):483–490

    PubMed  Google Scholar 

  • Wissing ER et al (2011) Debio-025 is more effective than prednisone in reducing muscular pathology in mdx mice. Neuromuscul Disord 20(11):753–760

    Google Scholar 

  • Wu B et al (2010) Dose-dependent restoration of dystrophin expression in cardiac muscle of dystrophic mice by systemically delivered morpholino. Gene Ther 17(1):132-140

  • Yiu E, Kornberg A (2008) Duchenne muscular dystrophy. Neurol India 56(3):236–247

    PubMed  Google Scholar 

  • Yokota T et al (2006) Expansion of revertant fibers in dystrophic mdx muscles reflects activity of muscle precursor cells and serves as an index of muscle regeneration. J Cell Sci 119(Pt 13):2679–2687

    CAS  PubMed  Google Scholar 

  • Yokota T et al (2009) Efficacy of systemic morpholino exon–skipping in duchenne dystrophy dogs 65(6):667–676

  • Yokota T et al (2012) Exon skipping for nonsense mutations in Duchenne muscular dystrophy: too many mutations, too few patients?. Expert Opin Biol Ther 12(9):1141–1152.

  • Yoshida M et al (2006) Dietary NaCl supplementation prevents muscle necrosis in a mouse model of duchenne muscular dystrophy. Am J Physiol Regul Intregr Comp Physiol 1(290):449–455

    Google Scholar 

  • Zeiger U, Mitchell CH, Khurana TS (2010) Superior calcium homeostasis of extraocular muscles. Exp Eye Res 91(5):613–622

    PubMed Central  CAS  PubMed  Google Scholar 

Download references

Conflict of interest

The authors have no financial, professional or personal conflicts relating to this publication.

Grant support

J.M. was part funded by the Department of Physiology, UCC and Muscular Dystrophy Ireland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dervla O’Malley.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manning, J., O’Malley, D. What has the mdx mouse model of duchenne muscular dystrophy contributed to our understanding of this disease?. J Muscle Res Cell Motil 36, 155–167 (2015). https://doi.org/10.1007/s10974-015-9406-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10974-015-9406-4

Keywords

Navigation